Skip to content

Commit

Permalink
Merge pull request #4810 from openjournals/joss.05706
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Dec 2, 2023
2 parents 0879a57 + a853c1e commit 1dc099b
Show file tree
Hide file tree
Showing 3 changed files with 773 additions and 0 deletions.
253 changes: 253 additions & 0 deletions joss.05706/10.21105.joss.05706.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231202T075959-85ab7f051a8917422f5ce9f34a27c3a170369cd1</doi_batch_id>
<timestamp>20231202075959</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>92</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PyBCI: A Python Package for Brain-Computer Interface
(BCI) Design</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Liam</given_name>
<surname>Booth</surname>
<ORCID>https://orcid.org/0000-0002-8749-9726</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Aziz</given_name>
<surname>Asghar</surname>
<ORCID>https://orcid.org/0000-0002-3735-4449</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Anthony</given_name>
<surname>Bateson</surname>
<ORCID>https://orcid.org/0000-0002-4780-4458</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>02</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5706</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05706</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10245437</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5706</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05706</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05706</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05706.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="NEURIPS2019_9015">
<volume_title>PyTorch: An imperative style, high-performance
deep learning library</volume_title>
<author>Paszke</author>
<cYear>2019</cYear>
<unstructured_citation>Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S.
(2019). PyTorch: An imperative style, high-performance deep learning
library (H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, &amp; R. Garnett, Eds.; p. 80248035). Curran Associates, Inc.
Curran Associates, Inc.
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf</unstructured_citation>
</citation>
<citation key="oliphant2006guide">
<volume_title>A guide to NumPy</volume_title>
<author>Oliphant</author>
<volume>1</volume>
<cYear>2006</cYear>
<unstructured_citation>Oliphant, T. E. (2006). A guide to
NumPy (Vol. 1). Trelgol Publishing USA.</unstructured_citation>
</citation>
<citation key="tensorflow2015-whitepaper">
<article_title>TensorFlow: Large-scale machine learning on
heterogeneous systems</article_title>
<author>Abadi</author>
<cYear>2015</cYear>
<unstructured_citation>Abadi, M., Agarwal, A., Barham, P.,
Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/</unstructured_citation>
</citation>
<citation key="lsl">
<article_title>Sccn/liblsl: v1.16.2</article_title>
<author>Kothe</author>
<doi>10.5281/zenodo.7978343</doi>
<cYear>2023</cYear>
<unstructured_citation>Kothe, C., Stenner, T., Boulay, C.,
Grivich, M., Medine, D., tobiasherzke, chausner, Grimm, G., xloem,
Biancarelli, A., Mansencal, B., Maanen, P., Frey, J., Chen, J.,
kyucrane, Powell, S., Clisson, P., &amp; phfix. (2023). Sccn/liblsl:
v1.16.2 (Version v1.16.2). Zenodo.
https://doi.org/10.5281/zenodo.7978343</unstructured_citation>
</citation>
<citation key="vallat_antropy_2023">
<article_title>AntroPy: Entropy and complexity of (EEG)
time-series in Python</article_title>
<author>Vallat</author>
<journal_title>GitHub repository</journal_title>
<cYear>2023</cYear>
<unstructured_citation>Vallat, R. (2023). AntroPy: Entropy
and complexity of (EEG) time-series in Python. In GitHub repository.
https://github.com/raphaelvallat/antropy;
GitHub.</unstructured_citation>
</citation>
<citation key="scikit-learn">
<article_title>Scikit-learn: Machine learning in
Python</article_title>
<author>Pedregosa</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<volume>12</volume>
<cYear>2011</cYear>
<unstructured_citation>Pedregosa, F., Varoquaux, G.,
Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., &amp; Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.</unstructured_citation>
</citation>
<citation key="2020SciPy-NMeth">
<article_title>SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python</article_title>
<author>Virtanen</author>
<journal_title>Nature Methods</journal_title>
<volume>17</volume>
<doi>10.1038/s41592-019-0686-2</doi>
<cYear>2020</cYear>
<unstructured_citation>Virtanen, P., Gommers, R., Oliphant,
T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17,
261–272.
https://doi.org/10.1038/s41592-019-0686-2</unstructured_citation>
</citation>
<citation key="2021bateson_asghar">
<article_title>Development and evaluation of a
smartphone-based electroencephalography (EEG) system</article_title>
<author>Bateson</author>
<journal_title>IEEE Access</journal_title>
<volume>PP</volume>
<doi>10.1109/ACCESS.2021.3079992</doi>
<cYear>2021</cYear>
<unstructured_citation>Bateson, A., &amp; Asghar, A. (2021).
Development and evaluation of a smartphone-based electroencephalography
(EEG) system. IEEE Access, PP, 1–1.
https://doi.org/10.1109/ACCESS.2021.3079992</unstructured_citation>
</citation>
<citation key="OpenViBE">
<article_title>OpenViBE: An open-source software platform to
design, test, and use brain–computer interfaces in real and virtual
environments</article_title>
<author>Renard</author>
<journal_title>Presence</journal_title>
<issue>1</issue>
<volume>19</volume>
<doi>10.1162/pres.19.1.35</doi>
<cYear>2010</cYear>
<unstructured_citation>Renard, Y., Lotte, F., Gibert, G.,
Congedo, M., Maby, E., Delannoy, V., Bertrand, O., &amp; Lécuyer, A.
(2010). OpenViBE: An open-source software platform to design, test, and
use brain–computer interfaces in real and virtual environments.
Presence, 19(1), 35–53.
https://doi.org/10.1162/pres.19.1.35</unstructured_citation>
</citation>
<citation key="BCI2000">
<article_title>BCI2000: A general-purpose brain-computer
interface (BCI) system</article_title>
<author>Schalk</author>
<journal_title>IEEE Transactions on Biomedical
Engineering</journal_title>
<issue>6</issue>
<volume>51</volume>
<doi>10.1109/TBME.2004.827072</doi>
<cYear>2004</cYear>
<unstructured_citation>Schalk, G., McFarland, D. J.,
Hinterberger, T., Birbaumer, N., &amp; Wolpaw, J. R. (2004). BCI2000: A
general-purpose brain-computer interface (BCI) system. IEEE Transactions
on Biomedical Engineering, 51(6), 1034–1043.
https://doi.org/10.1109/TBME.2004.827072</unstructured_citation>
</citation>
<citation key="BciPy">
<article_title>BciPy: Brain–computer interface software in
Python</article_title>
<author>Memmott</author>
<journal_title>Brain-Computer Interfaces</journal_title>
<issue>4</issue>
<volume>8</volume>
<doi>10.1080/2326263X.2021.1878727</doi>
<cYear>2021</cYear>
<unstructured_citation>Memmott, T., Koçanaoğulları, A.,
Lawhead, M., Klee, D., Dudy, S., Fried-Oken, M., &amp; Oken, B. (2021).
BciPy: Brain–computer interface software in Python. Brain-Computer
Interfaces, 8(4), 137–153.
https://doi.org/10.1080/2326263X.2021.1878727</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 1dc099b

Please sign in to comment.