Skip to content

Commit

Permalink
Merge pull request #4775 from openjournals/joss.05619
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Nov 11, 2023
2 parents ef860e0 + e9ddfe7 commit 342a152
Show file tree
Hide file tree
Showing 10 changed files with 608 additions and 0 deletions.
217 changes: 217 additions & 0 deletions joss.05619/10.21105.joss.05619.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231111T033521-f1baa724b16b67da3edc2fd44ec3831749ab952b</doi_batch_id>
<timestamp>20231111033521</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>91</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>ER-Evaluation: End-to-End Evaluation of Entity
Resolution Systems</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Olivier</given_name>
<surname>Binette</surname>
<ORCID>https://orcid.org/0000-0001-6009-5206</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jerome P.</given_name>
<surname>Reiter</surname>
<ORCID>https://orcid.org/0000-0002-8374-3832</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>11</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5619</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05619</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10086102</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5619</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05619</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05619</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05619.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="binette2022a">
<article_title>(Almost) all of entity
resolution</article_title>
<author>Binette</author>
<journal_title>Science Advances</journal_title>
<issue>12</issue>
<volume>8</volume>
<doi>10.1126/sciadv.abi8021</doi>
<cYear>2022</cYear>
<unstructured_citation>Binette, O., &amp; Steorts, R. C.
(2022). (Almost) all of entity resolution. Science Advances, 8(12),
eabi8021. https://doi.org/10.1126/sciadv.abi8021</unstructured_citation>
</citation>
<citation key="binette2022b">
<article_title>Estimating the performance of entity
resolution algorithms: Lessons learned through
PatentsView.org</article_title>
<author>Binette</author>
<journal_title>The American Statistician</journal_title>
<issue>4</issue>
<volume>77</volume>
<doi>10.1080/00031305.2023.2191664</doi>
<cYear>2023</cYear>
<unstructured_citation>Binette, O., York, S. A., Hickerson,
E., Baek, Y., Madhavan, S., &amp; Jones, C. (2023). Estimating the
performance of entity resolution algorithms: Lessons learned through
PatentsView.org. The American Statistician, 77(4), 370–380.
https://doi.org/10.1080/00031305.2023.2191664</unstructured_citation>
</citation>
<citation key="binette2022c">
<article_title>PatentsView-Evaluation: Evaluation datasets
and tools to advance research on inventor name
disambiguation</article_title>
<author>Binette</author>
<journal_title>arXiv e-prints</journal_title>
<doi>10.48550/arXiv.2301.03591</doi>
<cYear>2023</cYear>
<unstructured_citation>Binette, O., Madhavan, S., Butler,
J., Card, B. A., Melluso, E., &amp; Jones, C. (2023).
PatentsView-Evaluation: Evaluation datasets and tools to advance
research on inventor name disambiguation. arXiv e-Prints.
https://doi.org/10.48550/arXiv.2301.03591</unstructured_citation>
</citation>
<citation key="binette2023">
<article_title>An end-to-end evaluation framework for entity
resolution systems with application to inventor name
disambiguation</article_title>
<author>Binette</author>
<cYear>2023</cYear>
<unstructured_citation>Binette, O., Baek, Y., Melluso, E.,
Jones, C., Dasylva, A., &amp; Reiter, J. P. (2023). An end-to-end
evaluation framework for entity resolution systems with application to
inventor name disambiguation.</unstructured_citation>
</citation>
<citation key="wang2022">
<article_title>Bridging the gap between reality and ideality
of entity matching: A revisting and benchmark
re-construction</article_title>
<author>Wang</author>
<journal_title>Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22</journal_title>
<doi>10.24963/ijcai.2022/552</doi>
<cYear>2022</cYear>
<unstructured_citation>Wang, T., Lin, H., Fu, C., Han, X.,
Sun, L., Xiong, F., Chen, H., Lu, M., &amp; Zhu, X. (2022). Bridging the
gap between reality and ideality of entity matching: A revisting and
benchmark re-construction. In L. D. Raedt (Ed.), Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22 (pp. 3978–3984). International Joint Conferences on Artificial
Intelligence Organization.
https://doi.org/10.24963/ijcai.2022/552</unstructured_citation>
</citation>
<citation key="christen2012">
<volume_title>Data Matching: Concepts and Techniques for
Record Linkage, Entity Resolution, and Duplicate
Detection</volume_title>
<author>Christen</author>
<cYear>2012</cYear>
<unstructured_citation>Christen, P. (2012). Data Matching:
Concepts and Techniques for Record Linkage, Entity Resolution, and
Duplicate Detection. Springer Publishing Company,
Incorporated.</unstructured_citation>
</citation>
<citation key="marchant2017">
<article_title>In search of an entity resolution OASIS:
Optimal asymptotic sequential importance sampling</article_title>
<author>Marchant</author>
<journal_title>Proc. VLDB Endow.</journal_title>
<issue>11</issue>
<volume>10</volume>
<doi>10.14778/3137628.3137642</doi>
<cYear>2017</cYear>
<unstructured_citation>Marchant, N. G., &amp; Rubinstein, B.
I. P. (2017). In search of an entity resolution OASIS: Optimal
asymptotic sequential importance sampling. Proc. VLDB Endow., 10(11),
1322–1333.
https://doi.org/10.14778/3137628.3137642</unstructured_citation>
</citation>
<citation key="papadakis2021">
<volume_title>The Four Generations of Entity
Resolution</volume_title>
<author>Papadakis</author>
<cYear>2021</cYear>
<unstructured_citation>Papadakis, G., Ioannou, E., Thanos,
E., &amp; Palpanas, T. (2021). The Four Generations of Entity
Resolution. Morgan &amp; Claypool Publishers.</unstructured_citation>
</citation>
<citation key="christophides2019">
<article_title>An overview of end-to-end entity resolution
for big data</article_title>
<author>Christophides</author>
<journal_title>ACM Computing Surveys</journal_title>
<issue>6</issue>
<volume>53</volume>
<doi>10.1145/3418896</doi>
<cYear>2021</cYear>
<unstructured_citation>Christophides, V., Efthymiou, V.,
Palpanas, T., Papadakis, G., &amp; Stefanidis, K. (2021). An overview of
end-to-end entity resolution for big data. ACM Computing Surveys, 53(6),
1–42. https://doi.org/10.1145/3418896</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 342a152

Please sign in to comment.