Skip to content

Commit

Permalink
Merge pull request #4515 from openjournals/joss.05613
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Aug 26, 2023
2 parents fec111d + 51603c4 commit 5dd8c66
Show file tree
Hide file tree
Showing 3 changed files with 962 additions and 0 deletions.
338 changes: 338 additions & 0 deletions joss.05613/10.21105.joss.05613.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,338 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20230826T041334-a5b09ca0e02cc118b97e7926c1207c70dd6a4e71</doi_batch_id>
<timestamp>20230826041334</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>08</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>88</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>FuzzyClass: A family of Fuzzy and Non-Fuzzy
probabilistic-based classifiers</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jodavid A.</given_name>
<surname>Ferreira</surname>
<ORCID>https://orcid.org/0000-0002-2131-6464</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ronei M.</given_name>
<surname>Moraes</surname>
<ORCID>https://orcid.org/0000-0001-8436-8950</ORCID>
</person_name>
</contributors>
<publication_date>
<month>08</month>
<day>26</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5613</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05613</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8280775</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5613</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05613</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05613</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05613.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="de2006line">
<article_title>On-line training evaluation in virtual
reality simulators using fuzzy bayes rule</article_title>
<author>Moraes</author>
<journal_title>Applied artificial
intelligence</journal_title>
<doi>10.1142/9789812774118_0111</doi>
<cYear>2006</cYear>
<unstructured_citation>Moraes, RM., &amp; Machado, LS.
(2006). On-line training evaluation in virtual reality simulators using
fuzzy bayes rule. In Applied artificial intelligence (pp. 791–798).
World Scientific.
https://doi.org/10.1142/9789812774118_0111</unstructured_citation>
</citation>
<citation key="de2010fuzzy">
<article_title>Fuzzy gaussian naive bayes applied to online
assessment in virtual reality simulators</article_title>
<author>Moraes</author>
<journal_title>Computational intelligence: Foundations and
applications</journal_title>
<doi>10.1142/9789814324700_0035</doi>
<cYear>2010</cYear>
<unstructured_citation>Moraes, RM., &amp; Machado, LS.
(2010). Fuzzy gaussian naive bayes applied to online assessment in
virtual reality simulators. In Computational intelligence: Foundations
and applications (pp. 243–248). World Scientific.
https://doi.org/10.1142/9789814324700_0035</unstructured_citation>
</citation>
<citation key="de2018fuzzyGamma">
<article_title>A fuzzy gamma naive bayes
classifier</article_title>
<author>Moraes</author>
<journal_title>Data science and knowledge engineering for
sensing decision support: Proceedings of the 13th international FLINS
conference (FLINS 2018)</journal_title>
<doi>10.1142/9789813273238_0088</doi>
<cYear>2018</cYear>
<unstructured_citation>Moraes, RM., Soares, EAMG., &amp;
Machado, LS. (2018). A fuzzy gamma naive bayes classifier. Data Science
and Knowledge Engineering for Sensing Decision Support: Proceedings of
the 13th International FLINS Conference (FLINS 2018), 691–699.
https://doi.org/10.1142/9789813273238_0088</unstructured_citation>
</citation>
<citation key="de2020new">
<article_title>A new fuzzy beta naive bayes
classifier</article_title>
<author>Moraes</author>
<journal_title>Developments of artificial intelligence
technologies in computation and robotics: Proceedings of the 14th
international FLINS conference (FLINS 2020)</journal_title>
<doi>10.1142/9789811223334_0053</doi>
<cYear>2020</cYear>
<unstructured_citation>Moraes, RM., Rodrigues, AKG., Soares,
EAMG., &amp; Machado, LS. (2020). A new fuzzy beta naive bayes
classifier. Developments of Artificial Intelligence Technologies in
Computation and Robotics: Proceedings of the 14th International FLINS
Conference (FLINS 2020), 437–445.
https://doi.org/10.1142/9789811223334_0053</unstructured_citation>
</citation>
<citation key="de2020online">
<article_title>Online skills assessment in training based on
virtual reality using a novel fuzzy triangular naive bayes
network</article_title>
<author>Moraes</author>
<journal_title>Proc. FLINS</journal_title>
<doi>10.1142/9789811223334_0054</doi>
<cYear>2020</cYear>
<unstructured_citation>Moraes, R., Silva, ILA., &amp;
Machado, LS. (2020). Online skills assessment in training based on
virtual reality using a novel fuzzy triangular naive bayes network.
Proc. FLINS, 446–454.
https://doi.org/10.1142/9789811223334_0054</unstructured_citation>
</citation>
<citation key="efraim2011decision">
<volume_title>Decision support and business intelligence
systems</volume_title>
<author>Efraim</author>
<doi>10.1002/9780470634431</doi>
<cYear>2011</cYear>
<unstructured_citation>Efraim, T. (2011). Decision support
and business intelligence systems. Pearson Education India.
https://doi.org/10.1002/9780470634431</unstructured_citation>
</citation>
<citation key="konar2006computational">
<volume_title>Computational intelligence: Principles,
techniques and applications</volume_title>
<author>Konar</author>
<doi>10.1093/comjnl/bxm073</doi>
<cYear>2006</cYear>
<unstructured_citation>Konar, A. (2006). Computational
intelligence: Principles, techniques and applications. Springer Science
&amp; Business Media.
https://doi.org/10.1093/comjnl/bxm073</unstructured_citation>
</citation>
<citation key="lopes2023new">
<article_title>A new fuzzy trapezoidal naive bayes network
as basis for assessment in training based on virtual
reality</article_title>
<author>Lopes</author>
<journal_title>Machine learning, multi agent and cyber
physical systems: Proceedings of the 15th international FLINS conference
(FLINS 2022)</journal_title>
<doi>10.1142/9789811269264_0071</doi>
<cYear>2023</cYear>
<unstructured_citation>Lopes, ARR., Ferreira, JA., Machado,
LS., &amp; Moraes, RM. (2023). A new fuzzy trapezoidal naive bayes
network as basis for assessment in training based on virtual reality.
Machine Learning, Multi Agent and Cyber Physical Systems: Proceedings of
the 15th International FLINS Conference (FLINS 2022), 600–607.
https://doi.org/10.1142/9789811269264_0071</unstructured_citation>
</citation>
<citation key="moraes2014psychomotor">
<article_title>Psychomotor skills assessment in medical
training based on virtual reality using a weighted possibilistic
approach</article_title>
<author>Moraes</author>
<journal_title>Knowledge-Based Systems</journal_title>
<volume>70</volume>
<doi>10.1016/j.knosys.2014.05.006</doi>
<cYear>2014</cYear>
<unstructured_citation>Moraes, RM., &amp; Machado, LS.
(2014). Psychomotor skills assessment in medical training based on
virtual reality using a weighted possibilistic approach. Knowledge-Based
Systems, 70, 97–102.
https://doi.org/10.1016/j.knosys.2014.05.006</unstructured_citation>
</citation>
<citation key="moraes2015fuzzy">
<article_title>A fuzzy poisson naive bayes classifier for
epidemiological purposes</article_title>
<author>Moraes</author>
<journal_title>2015 7th international joint conference on
computational intelligence (IJCCI)</journal_title>
<volume>2</volume>
<doi>10.5220/0005642801930198</doi>
<cYear>2015</cYear>
<unstructured_citation>Moraes, RM., &amp; Machado, LS.
(2015). A fuzzy poisson naive bayes classifier for epidemiological
purposes. 2015 7th International Joint Conference on Computational
Intelligence (IJCCI), 2, 193–198.
https://doi.org/10.5220/0005642801930198</unstructured_citation>
</citation>
<citation key="moraes2016fuzzyBinom">
<article_title>A fuzzy binomial naive bayes classifier for
epidemiological data</article_title>
<author>Moraes</author>
<journal_title>2016 IEEE international conference on fuzzy
systems (FUZZ-IEEE)</journal_title>
<doi>10.1109/fuzz-ieee.2016.7737762</doi>
<cYear>2016</cYear>
<unstructured_citation>Moraes, RM., &amp; Machado, LS.
(2016). A fuzzy binomial naive bayes classifier for epidemiological
data. 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
745–750.
https://doi.org/10.1109/fuzz-ieee.2016.7737762</unstructured_citation>
</citation>
<citation key="moraes2020double">
<article_title>A double weighted fuzzy gamma naive bayes
classifier</article_title>
<author>Moraes</author>
<journal_title>Journal of Intelligent &amp; Fuzzy
Systems</journal_title>
<issue>Preprint</issue>
<doi>10.3233/jifs-179431</doi>
<cYear>2020</cYear>
<unstructured_citation>Moraes, RM., Soares, EAMG., &amp;
Machado, LS. (2020). A double weighted fuzzy gamma naive bayes
classifier. Journal of Intelligent &amp; Fuzzy Systems, Preprint, 1–12.
https://doi.org/10.3233/jifs-179431</unstructured_citation>
</citation>
<citation key="pathak2014beginning">
<volume_title>Beginning data science with R</volume_title>
<author>Pathak</author>
<doi>10.1007/978-3-319-12066-9</doi>
<cYear>2014</cYear>
<unstructured_citation>Pathak, MA. (2014). Beginning data
science with R. Springer.
https://doi.org/10.1007/978-3-319-12066-9</unstructured_citation>
</citation>
<citation key="webb2003statistical">
<volume_title>Statistical pattern recognition</volume_title>
<author>Webb</author>
<doi>10.1002/0470854774</doi>
<cYear>2003</cYear>
<unstructured_citation>Webb, AR. (2003). Statistical pattern
recognition. John Wiley &amp; Sons.
https://doi.org/10.1002/0470854774</unstructured_citation>
</citation>
<citation key="zadeh1965information">
<article_title>Information and control. Fuzzy
sets</article_title>
<author>Zadeh</author>
<journal_title>Information and Control</journal_title>
<issue>3</issue>
<volume>8</volume>
<doi>10.1016/s0019-9958(65)90241-x</doi>
<cYear>1965</cYear>
<unstructured_citation>Zadeh, LA. (1965). Information and
control. Fuzzy sets. Information and Control, 8(3), 338.
https://doi.org/10.1016/s0019-9958(65)90241-x</unstructured_citation>
</citation>
<citation key="zadeh1968">
<article_title>Probability measures of fuzzy
events</article_title>
<author>Zadeh</author>
<journal_title>Journal of mathematical analysis and
applications</journal_title>
<issue>2</issue>
<volume>23</volume>
<doi>10.1016/0022-247x(68)90078-4</doi>
<cYear>1968</cYear>
<unstructured_citation>Zadeh, LA. (1968). Probability
measures of fuzzy events. Journal of Mathematical Analysis and
Applications, 23(2), 421–427.
https://doi.org/10.1016/0022-247x(68)90078-4</unstructured_citation>
</citation>
<citation key="zadeh1988fuzzy">
<article_title>Fuzzy logic</article_title>
<author>Zadeh</author>
<journal_title>Computer</journal_title>
<issue>4</issue>
<volume>21</volume>
<doi>10.1109/2.53</doi>
<cYear>1988</cYear>
<unstructured_citation>Zadeh, LA. (1988). Fuzzy logic.
Computer, 21(4), 83–93.
https://doi.org/10.1109/2.53</unstructured_citation>
</citation>
<citation key="moraes2016fuzzy">
<article_title>A fuzzy exponential naive bayes
classifier</article_title>
<author>Moraes</author>
<journal_title>Uncertainty modelling in knowledge
engineering and decision making: Proceedings of the 12th international
FLINS conference</journal_title>
<doi>10.1142/9789813146976_0035</doi>
<cYear>2016</cYear>
<unstructured_citation>Moraes, RM., &amp; Machado, LS.
(2016). A fuzzy exponential naive bayes classifier. Uncertainty
Modelling in Knowledge Engineering and Decision Making: Proceedings of
the 12th International FLINS Conference, 207–212.
https://doi.org/10.1142/9789813146976_0035</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 5dd8c66

Please sign in to comment.