Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added layers, synapses, neurons #27

Open
wants to merge 89 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 9 commits
Commits
Show all changes
89 commits
Select commit Hold shift + click to select a range
f3f52f6
layers, neurons, parameters
staceeey89 May 20, 2024
f8e90b4
2
staceeey89 May 20, 2024
a51c109
section_subject_domain_structure
staceeey89 May 25, 2024
5653671
/
staceeey89 May 25, 2024
80860b1
..
staceeey89 May 25, 2024
7c4e3f5
...
staceeey89 May 25, 2024
5a5ed63
.....
staceeey89 May 25, 2024
741bb1b
.
staceeey89 May 25, 2024
e4fab9e
build(kb): fixed subdivinding, removed comments,
staceeey89 May 31, 2024
370e5f0
Rename intermediate neural element.scs to intermediate_neural_element…
staceeey89 Oct 4, 2024
6098777
Rename directive neural element.scs to directive_neural_element.scs
staceeey89 Oct 4, 2024
3f35540
Rename analytical unit.scs to analytical_unit.scs
staceeey89 Oct 4, 2024
dbfd839
Rename IGOR6_context_neuron.scs to concept_context_neuron.scs
staceeey89 Oct 4, 2024
1afe097
Rename analytical_unit.scs to concept_analytical_unit.scs
staceeey89 Oct 4, 2024
c2beb2a
Rename directive_neural_element.scs to concept_directive_neural_eleme…
staceeey89 Oct 4, 2024
a04cd63
Rename entry_star.scs to concept_entry_star.scs
staceeey89 Oct 4, 2024
f40a44d
Rename formal_neuron.scs to concept_formal_neuron.scs
staceeey89 Oct 4, 2024
23a0b2d
Rename formal_neuron_with_a_synaptic_transformation_function.scs to c…
staceeey89 Oct 4, 2024
11da596
Rename formal_neuron_with_activation_function.scs to concept_formal_n…
staceeey89 Oct 4, 2024
a96b157
Rename intermediate_neural_element.scs to concept_intermediate_neural…
staceeey89 Oct 4, 2024
0e7c761
Rename neural_element.scs to concept_neural_element.scs
staceeey89 Oct 4, 2024
c2cbbe0
Rename neuron_core.scs to concept_neuron_core.scs
staceeey89 Oct 4, 2024
b976e3d
Rename neuron_node.scs to concept_neuron_node.scs
staceeey89 Oct 4, 2024
3396813
Rename neuron_winner.scs to concept_neuron_winner.scs
staceeey89 Oct 4, 2024
a0ba488
Rename sinaps.scs to concept_sinaps.scs
staceeey89 Oct 4, 2024
33392e3
Rename synapse_weight.scs to nrel_synapse_weight.scs
staceeey89 Oct 4, 2024
e58e2f9
Rename layer.scs to nrel_layer.scs
staceeey89 Oct 4, 2024
7556d43
Rename IGOR14_Kohonen_layer.scs to nrel_Kohonen_layer.scs
staceeey89 Oct 4, 2024
79a0b7c
Rename IGOR18_Grossberg_layer.scs to nrel_Grossberg_layer.scs
staceeey89 Oct 4, 2024
1ba51d5
Rename width.scs to nrel_width.scs
staceeey89 Oct 4, 2024
61122c2
Update concept_artificial_neural_layers.scs
staceeey89 Oct 4, 2024
2091870
Update concept_analytical_unit.scs
staceeey89 Oct 7, 2024
a01fccb
Update concept_context_neuron.scs
staceeey89 Oct 7, 2024
32bb9da
Update concept_directive_neural_element.scs
staceeey89 Oct 7, 2024
c3ab96e
Update concept_entry_star.scs
staceeey89 Oct 7, 2024
e0cf20e
Update concept_formal_neuron.scs
staceeey89 Oct 7, 2024
6b38e7a
Update concept_formal_neuron_with_a_synaptic_transformation_function.scs
staceeey89 Oct 7, 2024
cacc389
Update concept_formal_neuron_with_activation_function.scs
staceeey89 Oct 7, 2024
aeeeae1
Update concept_intermediate_neural_element.scs
staceeey89 Oct 7, 2024
662b2cd
Update concept_neural_element.scs
staceeey89 Oct 7, 2024
3b66092
Update concept_neuron_core.scs
staceeey89 Oct 7, 2024
025de36
Update concept_neuron_node.scs
staceeey89 Oct 7, 2024
65778ce
Update concept_neuron_winner.scs
staceeey89 Oct 7, 2024
0f9ac16
Update concept_number_of_neurons.scs
staceeey89 Oct 7, 2024
3d813c2
Update concept_number_of_synapses.scs
staceeey89 Oct 7, 2024
9d30865
Update concept_sinaps.scs
staceeey89 Oct 7, 2024
e19121a
Update concept_synapse_weight.scs
staceeey89 Oct 7, 2024
1f53a4c
Update concept_synaptic_connection.scs
staceeey89 Oct 7, 2024
49df67a
Update concept_artificial_neural_network_layer_batch_normalization.scs
staceeey89 Oct 7, 2024
6d1f8be
Update concept_convolution_layer_of_an_artificial_neural_network.scs
staceeey89 Oct 7, 2024
35945ea
Update concept_dropout_artificial_neural_network_layer.scs
staceeey89 Oct 7, 2024
8b2105d
Update concept_full_link_layer_of_artificial_neural_network.scs
staceeey89 Oct 7, 2024
4e4e98a
Update concept_layer_of_artificial_neural_networks_of_nonlinear_trans…
staceeey89 Oct 7, 2024
0a1052e
Update concept_number_of_layers.scs
staceeey89 Oct 7, 2024
c4bf871
Update concept_pooling_artificial_neural_network_layer.scs
staceeey89 Oct 7, 2024
829d847
Update concept_architectural_parameter_of_artificial_neural_networks.scs
staceeey89 Oct 7, 2024
6203ed3
Update concept_artificial_neural_network_parameter.scs
staceeey89 Oct 7, 2024
6ea05ab
Update concept_configurable_artificial_neural_network_parameter.scs
staceeey89 Oct 7, 2024
3da84d9
Update concept_convolution_kernels.scs
staceeey89 Oct 7, 2024
e12497a
Rename IGOR12_radial_basis_func.scs to nrel_radial_basis_func.scs
staceeey89 Oct 14, 2024
124ad37
Update and rename IGOR7_error_min.scs to concept_error_min.scs
staceeey89 Oct 14, 2024
d7b273e
Update and rename Partitioned_Reservation.scs to concept_Partitioned_…
staceeey89 Oct 14, 2024
e887f26
Update and rename classifier.scs to concept_classifier.scs
staceeey89 Oct 14, 2024
152372c
Update and rename decision_tree.scs to concept_decision_tree.scs
staceeey89 Oct 14, 2024
ea2f617
Rename discriminant_line.scs to nrel_discriminant_line.scs
staceeey89 Oct 14, 2024
dc3a2bb
Update and rename radial_basis_function.scs to concept_radial_basis_f…
staceeey89 Oct 14, 2024
030ef17
Rename function_argument.scs to nrel_function_argument.scs
staceeey89 Oct 14, 2024
99c84af
Update and rename error back propagation algorithm.scs to concept_err…
staceeey89 Oct 14, 2024
a2bbebf
Rename function_value.scs to nrel_function_value.scs
staceeey89 Oct 14, 2024
e9e24d4
Update and rename principal_component_method.scs to concept_principal…
staceeey89 Oct 14, 2024
bdb24b8
Update and rename gaussian_classifier.scs to concept_gaussian_classif…
staceeey89 Oct 14, 2024
00d002b
Update and rename gradient_method_optimization.scs to concept_gradien…
staceeey89 Oct 14, 2024
b39867c
Update and rename hierarchy classifier.scs to concept_hierarchy_class…
staceeey89 Oct 14, 2024
9734a9c
Update and rename linear systolic array.scs to concept_linear_systoli…
staceeey89 Oct 14, 2024
b55f661
Rename linear_function.scs to nrel_linear_function.scs
staceeey89 Oct 14, 2024
0677063
Rename sigmoid_func.scs to nrel_sigmoid_func.scs
staceeey89 Oct 14, 2024
ecf0f57
Rename threshold_func.scs to nrel_threshold_func.scs
staceeey89 Oct 14, 2024
4627a82
Update and rename vector_quantization.scs to concept_vector_quantizat…
staceeey89 Oct 14, 2024
1bd5300
Update and rename loss_function.scs to concept_loss_function.scs
staceeey89 Oct 14, 2024
0509f86
Update and rename minimum_standard_error.scs to concept_minimum_stand…
staceeey89 Oct 14, 2024
f46b702
Delete kb/sd_structure_of_artificial_neural_networks/SD_layers/number…
staceeey89 Oct 14, 2024
656a6de
Create concept_function.scs
staceeey89 Oct 14, 2024
c4d8ebd
Update nrel_activation_function.scs
staceeey89 Oct 14, 2024
6e2f751
Create DownloadSamplingAgent.py
staceeey89 Dec 9, 2024
f3f549b
Create DownloadSamplingModule.py
staceeey89 Dec 9, 2024
4c8ef00
Delete problem-solver/py/downloadSamplingModule directory
staceeey89 Dec 9, 2024
ff0a0dd
Create DownloadSamplingModule.py
staceeey89 Dec 9, 2024
ce7e9b3
Create DownloadSamplingAgent.py
staceeey89 Dec 9, 2024
44d6a15
hot fix
staceeey89 Dec 12, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
concept_hyperbolic_tangent_function

=> nrel_main_idtf:
[функция гиперболического тангенса](* <-lang_ru;; *);
[hyperbolic tangent function](* <-lang_en;; *);;

concept_hyperbolic_tangent_function <-rrel_explored_concept: section_subject_domain_of_algorithms_and_functions;;
7 changes: 7 additions & 0 deletions kb/sd_algorithms_and_functions/concept_relu_function.scs
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
concept_relu_function

=> nrel_main_idtf:
[функция ReLU](* <-lang_ru;; *);
[relu function](* <-lang_en;; *);;

concept_relu_function <-rrel_explored_concept: section_subject_domain_of_algorithms_and_functions;;
7 changes: 7 additions & 0 deletions kb/sd_algorithms_and_functions/concept_sigmoid_function.scs
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
concept_sigmoid_function

=> nrel_main_idtf:
[сигмоидная функция](* <-lang_ru;; *);
[sigmoid function](* <-lang_en;; *);;

concept_sigmoid_function <- rrel_explored_concept: section_subject_domain_of_algorithms_and_functions;;
6 changes: 6 additions & 0 deletions kb/sd_algorithms_and_functions/concept_softmax_function.scs
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
concept_softmax_function

=>nrel_main_idtf:
[softmax function](* <-lang_en;; *);;

concept_softmax_function <-rrel_explored_concept: section_subject_domain_of_algorithms_and_functions;;
4 changes: 4 additions & 0 deletions kb/sd_algorithms_and_functions/concept_threshold_function.scs
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
concept_threshold_function=>nrel_main_idtf:[threshold function](* <-lang_en;; *);;
concept_threshold_function=>nrel_main_idtf:[пороговая функция](* <-lang_ru;; *);;

concept_threshold_function<-rrel_explored_concept: section_subject_domain_of_algorithms_and_functions;;
37 changes: 32 additions & 5 deletions kb/sd_algorithms_and_functions/nrel_activation_function.scs
Original file line number Diff line number Diff line change
Expand Up @@ -6,14 +6,30 @@ nrel_activation_function=>nrel_idtf:[функция возбуждения](* <-
=> nrel_main_idtf: [Опр.(функция активации*)](* <- lang_ru;; *);;
<= nrel_sc_text_translation:...
(*
-> rrel_example: [Функция активации - взаимно-однозначное соответствие, областью определения которого являются множество нейронных узлов предыдущего слоя, а областью значений - множество сигналов текущего слоя, преобразованного по заданной формуле.](* <- lang_ru;; *);;
-> rrel_example: [Функция активации* - взаимно-однозначное соответствие, областью определения которого являются множество нейронных узлов предыдущего слоя, а областью значений - множество сигналов текущего слоя, преобразованного по заданной формуле.](* <- lang_ru;; *);;
*);;
-> rrel_key_sc_element: nrel_activation_function;;
<= nrel_using_constants :...
(*
-> nrel_bijective_mapping; concept_neuron_node; nrel_layer; logical_formula;;
*);;
*);;

definition -> ...
(*
=> nrel_main_idtf: [Опр.(функция активации*)](* <- lang_ru;; *);;
<= nrel_sc_text_translation:...
(*
-> rrel_example: [Функция активации* - неролевое отношение, связывающее формальный нейрон с функцией,
результат применения которой к взвешенной сумме нейрона определяет его выходное значение.](* <- lang_ru;; *);;
*);;
-> rrel_key_sc_element: nrel_activation_function;;
<= nrel_using_constants :...
(*
-> nrel_bijective_mapping; concept_neuron_node; nrel_layer; logical_formula;;
*);;
*);;

statement -> ...
(*
-> rrel_key_sc_element: nrel_activation_function; nrel_inclusion; concept_neural_network_in_graphical_representation;;
Expand All @@ -23,16 +39,27 @@ nrel_activation_function=>nrel_idtf:[функция возбуждения](* <-
-> rrel_example: [Механизм любой нейронной сети подразумевает наличие функции активации](* <- lang_ru;; *);;
*);;
*);;
nrel_activation_function => nrel_first_domain: concept_neuron_node;;
nrel_activation_function => nrel_second_domain: concept_neuron_node;;
nrel_activation_function=> nrel_definitional_domain:...
nrel_activation_function => nrel_first_domain: formal_neuron;;
nrel_activation_function => nrel_second_domain: function;


=> nrel_subdividing: {
concept_threshold_function;
concept_sigmoid_function;
concept_hyperbolic_tangent_function;
concept_relu_function;
concept_softmax_function

};;

nrel_activation_function => nrel_definitional_domain:...
(*
<= nrel_combination: number;;
*);;
nrel_activation_function<-oriented_relation; antireflexive_relation; antitransitive_relation; antisymmetric_relation;;
nrel_activation_function=>nrel_inclusion:radial_basis_activation_function; nrel_linear_threshold_activation_function; nrel_linear_activation_function; nrel_sigmoid_activation_function;
nrel_threshold_activation_function;;
//done

nrel_activation_function<-rrel_explored_concept: section_subject_domain_of_algorithms_and_functions;;

Expand Down
2 changes: 1 addition & 1 deletion kb/sd_algorithms_and_functions/threshold_func.scs
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
sc_node_norole_relation->nrel_threshold_activation_function;;
nrel_threshold_activation_function=>nrel_main_idtf:[threshlod activation function*](* <-lang_en;; *);;
nrel_threshold_activation_function=>nrel_main_idtf:[threshold activation function*](* <-lang_en;; *);;
nrel_threshold_activation_function=>nrel_main_idtf:[пороговая функция активации*](* <-lang_ru;; *);;
nrel_threshold_activation_function=>nrel_idtf:[активационная функция единого скачка*](* <-lang_ru;; *);;
definition -> ...
Expand Down
2 changes: 1 addition & 1 deletion kb/sd_output_data/nrel_output_layer.scs
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ nrel_output_layer
[выходной слой*]
(* <- lang_ru;; *);
=>nrel_idtf:
[обрабатывающий слой*]
[выходной слой*]
(* <- lang_ru;; *);

///////////////////////////////////////////////////////////////////////////////
Expand Down
Original file line number Diff line number Diff line change
@@ -1,31 +1,31 @@
sc_node_norole_relation->Kohonen_layer;;
Kohonen_layer->nrel_main_idtf:[Kohonen nrel_layer*](* <-lang_en;; *);;
Kohonen_layer->nrel_main_idtf:[слой Кохонена*](* <-lang_ru;; *);;
sc_node_norole_relation->nrel_Kohonen_layer;;
nrel_Kohonen_layer->nrel_main_idtf:[Kohonen nrel_layer*](* <-lang_en;; *);;
nrel_Kohonen_layer->nrel_main_idtf:[слой Кохонена*](* <-lang_ru;; *);;
definition -> ...
(*
=> nrel_main_idtf: [Опр.(слой Кохонена*)](* <- lang_ru;; *);;
<= nrel_sc_text_translation:...
(*
-> rrel_example: [Слой Кохонена - слой нейронной сети Кохонена без нейронов смещения, где наибольший нейронный узел становится единичным, остальные обращаются в ноль.](* <- lang_ru;; *);;
*);;
-> rrel_key_sc_element: Kohonen_layer;;
-> rrel_key_sc_element: nrel_Kohonen_layer;;
<= nrel_using_constants :...
(*
-> concept_context_neuron; nrel_layer; concept_neuron_node; self_organizing_neural_network; unique_existence;;
*);;
*);;
Kohonen_layer => nrel_first_domain: concept_neural_network_in_graphical_representation;;
Kohonen_layer => nrel_second_domain: number;;
Kohonen_layer => nrel_definitional_domain:...
nrel_Kohonen_layer => nrel_first_domain: concept_neural_network_in_graphical_representation;;
nrel_Kohonen_layer => nrel_second_domain: number;;
nrel_Kohonen_layer => nrel_definitional_domain:...
(*
<= nrel_combination:...
(*
-> concept_neural_network_in_graphical_representation; number;;
*);;
*);;
Kohonen_layer<-oriented_relation; antireflexive_relation; antitransitive_relation; antisymmetric_relation;;
nrel_Kohonen_layer<-oriented_relation; antireflexive_relation; antitransitive_relation; antisymmetric_relation;;

Kohonen_layer<-rrel_explored_concept: section_subject_domain_of_layers;;
nrel_Kohonen_layer<-rrel_explored_concept: section_subject_domain_of_layers;;
//done


Expand Down
Original file line number Diff line number Diff line change
@@ -1,22 +1,22 @@
sc_node_norole_relation->Grossberg_layer;;
Grossberg_layer->nrel_main_idtf:[Grossberg nrel_layer*](* <-lang_en;; *);;
Grossberg_layer->nrel_main_idtf:[слой Гроссберга*](* <-lang_ru;; *);;
sc_node_norole_relation->nrel_Grossberg_layer;;
nrel_Grossberg_layer->nrel_main_idtf:[Grossberg nrel_layer*](* <-lang_en;; *);;
nrel_Grossberg_layer->nrel_main_idtf:[слой Гроссберга*](* <-lang_ru;; *);;
definition -> ...
(*
=> nrel_main_idtf: [Опр.(слой Гроссберга*)](* <- lang_ru;; *);;
<= nrel_sc_text_translation:...
(*
-> rrel_example: [Слой Гроссберга - слой нейронной без нейронов смещения, где только один нейронный узел отличен от нуля.](* <- lang_ru;; *);;
*);;
-> rrel_key_sc_element: Grossberg_layer;;
-> rrel_key_sc_element: nrel_Grossberg_layer;;
<= nrel_using_constants :...
(*
-> concept_context_neuron; nrel_layer; concept_neuron_node; self_organizing_neural_network; unique_existence; negation;;
*);;
*);;
Grossberg_layer => nrel_first_domain: concept_neural_network_in_graphical_representation;;
Grossberg_layer => nrel_second_domain: number;;
Grossberg_layer => nrel_definitional_domain:...
nrel_Grossberg_layer => nrel_first_domain: concept_neural_network_in_graphical_representation;;
nrel_Grossberg_layer => nrel_second_domain: number;;
nrel_Grossberg_layer => nrel_definitional_domain:...
(*
<= nrel_combination:...
(*
Expand All @@ -25,16 +25,16 @@ Grossberg_layer => nrel_definitional_domain:...
*);;
statement -> ...
(*
-> rrel_key_sc_element: Grossberg_layer; Kohonen_layer; negation; nrel_equal_of_quantities; concept_neuron_node; nrel_mapping;;
-> rrel_key_sc_element: nrel_Grossberg_layer; nrel_Kohonen_layer; negation; nrel_equal_of_quantities; concept_neuron_node; nrel_mapping;;
=> nrel_main_idtf: [Утв.(нейронный узел, слой Кохонена*, соответствие*, отрицание, равенство величин*)](* <- lang_ru;; *);;
<= nrel_sc_text_translation:...
(*
-> rrel_example: [Ненулевой нейронный узел слоя Гроссберга ставится в соответствие единичному нейронному узлу слоя Кохонена.](* <- lang_ru;; *);;
*);;
*);;
Grossberg_layer<-oriented_relation; antireflexive_relation; antitransitive_relation; antisymmetric_relation;;
nrel_Grossberg_layer<-oriented_relation; antireflexive_relation; antitransitive_relation; antisymmetric_relation;;

Grossberg_layer<-rrel_explored_concept: section_subject_domain_of_layers;;
nrel_Grossberg_layer<-rrel_explored_concept: section_subject_domain_of_layers;;
//done


Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
concept_artificial_neural_network_layer
// <- sc_node_class;
<= nrel_inclusion: layer;

=> nrel_main_idtf:
[слой искусственной нейронной сети](* <-lang_ru;; *);
[artificial neural network layer](* <-lang_en;; *);

=> nrel_idtf:
[слой и.н.с.](* <-lang_ru;; *);
[слой](* <-lang_ru;; *);
[множество слоев искусственных нейронных сетей](* <-lang_ru;; *);

<-rrel_key_sc_element:
Affirmation_of_concept_artificial_neural_network_layer
(*
-> rrel_key_sc_element: concept_artificial_neural_network_layer;;

=> nrel_main_idtf: [Примечание(слой и.н.с.)] (* <- lang_ru;; *);;

<= nrel_sc_text_translation: ...
(*
-> [Отдельный слой является искусственной нейронной сетью с одним слоем] (* <- lang_ru;; *);;
-> [Конфигурация слоя задается типом, количеством формальных нейронов, функцией активации] (* <- lang_ru;; *);;
-> [Функция активации слоя является функцией активации всех формальных нейронов этого слоя] (* <- lang_ru;; *);;
-> [Описание последовательности слоев и.н.с. с конфигурацией каждого слоя задает архитектуру и.н.с.] (* <- lang_ru;; *);;

*);;
*);

<-rrel_key_sc_element:
Definition_of_concept_artificial_neural_network_layer
(*
<- definition;;
<=nrel_sc_text_translation:...
(*
-> rrel_example:
[<p>
<b>Слой и.н.с.</b> - это множество нейронных элементов, на которые в каждый такт времени параллельно
поступает информация от других нейронных элементов сети.
</p>]
(*
<- lang_ru;;
=> nrel_format: format_html;;
*);;
*);;

=>nrel_main_idtf:[Опр. (слой и.н.с.)](* <-lang_ru;; => nrel_format: format_html;;*);;
*);

=> nrel_subdividing: {
concept_convolution_layer_of_an_artificial_neural_network;
concept_dropout_artificial_neural_network_layer;
concept_full_link_layer_of_artificial_neural_network;
concept_layer_of_artificial_neural_networks_of_nonlinear_transformation;
concept_pooling_artificial_neural_network_layer;
concept_artificial_neural_network_layer_batch_normalization
};;

concept_artificial_neural_network_layer<-rrel_explored_concept: section_subject_domain_of_layers;;
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
concept_artificial_neural_network_layer_batch_normalization

=> nrel_main_idtf:
[слой искусственной нейронной сети батч-нормализации](* <-lang_ru;; *);
[artificial neural network layer batch normalization](* <-lang_en;; *);;
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
concept_convolution_layer_of_an_artificial_neural_network

=> nrel_main_idtf:
[свёрточный слой искусственной нейронной сети](* <-lang_ru;; *);
[convolution layer of an artificial neural network](* <-lang_en;; *);

=> nrel_idtf:
[свёрточный слой и.н.с.](* <-lang_ru;; *);

<-rrel_key_sc_element:
Definition_of_concept_convolution_layer_of_an_artificial_neural_network
(*
<-definition;;
<=nrel_sc_text_translation:...
(*
-> rrel_example:
[<p>
<b>Свёрточный и.н.с.</b> - слой, в котором каждый нейрон является сверточным.
</p>]
(*
<-lang_ru;;
=> nrel_format: format_html;;
*);;
*);;
=>nrel_main_idtf:[Опр. (Свёрточный слой и.н.с).](* <-lang_ru;; => nrel_format: format_html;;*);;
*);

=> nrel_first_domain:concept_artificial_neural_network;
=> nrel_second_domain:concept_artificial_neural_network_layer;;


convolution_layer_of_an_artificial_neural_network<-rrel_explored_concept: section_subject_domain_of_layers;;
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
concept_dropout_artificial_neural_network_layer

=> nrel_main_idtf:
[dropout_artificial_neural_network_layer](* <-lang_en;; *);

=> nrel_idtf:
[слой, реализующий технику регуляризации dropout](* <-lang_ru;; *);


<-rrel_key_sc_element:
Affirmation_of_concept_dropout_artificial_neural_network_layer
(*
-> rrel_key_sc_element: cconcept_dropout_artificial_neural_network_layer;;

=> nrel_main_idtf: [Примечание(dropout_artificial_neural_network_layer)] (* <- lang_en;; *);;

<= nrel_sc_text_translation: ...
(*
-> [Данный тип слоя функционирует только во время обучения и.н.с.] (* <- lang_ru;; *);;

*);;
*);

<-rrel_key_sc_element:
Affirmation_of_concept_dropout_artificial_neural_network_layer
(*
-> rrel_key_sc_element: concept_dropout_artificial_neural_network_layer;;

=> nrel_main_idtf: [Пояснение(dropout_artificial_neural_network_layer)] (* <- lang_en;; *);;

<= nrel_sc_text_translation: ...
(*
-> [Поскольку полносвязные слои имеют большое количество настраиваемых параметров,
они подвержены эффекту переобучения. Один из способов устранить такой негативный
эффект — выполнить частичный отсев результатов на выходе полносвязного слоя. На
этапе обучения техника dropout позволяет отбросить выходную активность некоторых
нейронов с определенной, заданной вероятностью. Выходная активность “отброшенных”
нейронов полагается равной нулю.](*<-lang_ru;;*);;
*);;
*);;
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
concept_full_link_layer_of_artificial_neural_network

=> nrel_main_idtf:
[полносвязный слой искусственной нейронной сети](* <-lang_ru;; *);
[full-link layer of artificial neural network](* <-lang_en;; *);

=> nrel_idtf:
[полносвязный слой и.н.с.](* <-lang_ru;; *);

<-rrel_key_sc_element:
Definition_of_concept_full_link_layer_of_artificial_neural_network
(*
<-definition;;
<=nrel_sc_text_translation:...
(*
-> rrel_example:
[<p>
<b>Полносвязный слой и.н.с.</b> - слой, в котором каждый нейрон имеет связь с каждым нейроном предшествующего
слоя.
</p>]
(*
<-lang_ru;;
=> nrel_format: format_html;;
*);;
-> rrel_example:
[<p>
<b>Полносвязный слой и.н.с.</b> - слой, в котором каждый нейрон является полносвязным.
</p>]
(*
<-lang_ru;;
=> nrel_format: format_html;;
*);;
*);;

=>nrel_main_idtf:[Опр. (Полносвязный слой и.н.с.)](* <-lang_ru;; => nrel_format: format_html;;*);;
*);

=> nrel_first_domain:concept_artificial_neural_network;
=> nrel_second_domain:concept_artificial_neural_network_layer;;


concept_full_link_layer_of_artificial_neural_network<-rrel_explored_concept: section_subject_domain_of_layers;;
Loading