-
Pre-trained weights: Link
- Mar 14 2022:
- Release pre-trained weights (20 epochs on full training set)
- Mar 5 2022:
- Release pre-trained weights (12 epochs on full training set)
- Mar 1 2022:
- Release pre-trained weights (7 epochs on full training set)
- Update core.py and google colab for new code
- Jan 23 2022:
- Release pre-trained weights (20 epochs on a small set of data)
- Jan 17 2022:
- Release pre-trained weights (11 epochs on a small set of data).
- Add docker training
- Add streamlit
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.912
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.970
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.947
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.709
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.910
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.916
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.445
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.861
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.941
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.763
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.938
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.947
pubmed: AP50: 0.970, AP75: 0.947, AP: 0.912, AR: 0.941
Total training time: 18 days, 15:03:14.605917
docker pull phamquiluan/table-transformer:latest
# or
docker build -t phamquiluan/table-transformer -f Dockerfile .
# train TSR
docker run -it --shm-size 8G --gpus all -v /data/pubtables1m/PubTables1M-Structure-PASCAL-VOC:/code/data phamquiluan/table-transformer /bin/bash
cd src; python3 main.py --data_root_dir /code/data --data_type structure
Create a virtual environment and activate it as follows
python3.7 -m venv env; source env/bin/activate
pip install -U pip
pip install -r requirements.txt
streamlit run app.py