-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
executable file
·114 lines (88 loc) · 3.66 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2011 Peter Kropf. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import freenect
import cv
import frame_convert
import numpy as np
import math
import eye
import cfg
threshold = 229 #
current_depth = 727 #
closest = (1,1) # the closest location
distance = 1.0 # distance in meters from the kinect
shape = (cfg.kinect.y, cfg.kinect.x) # assumed shape of the depth array
def change_threshold(value):
global threshold
threshold = value
def change_depth(value):
global current_depth
current_depth = value
def move_eyes():
"""
"""
global closest, distance
eye.Left.focus(distance, (closest[1], closest[0]))
eye.Right.focus(distance, (closest[1], closest[0]))
def save_depth(timestamp, depth):
#print 'depth timestamp:', timestamp, timestamp - last_time
np.save('images/%d_depth' % timestamp, depth)
def save_video(timestamp, video):
#print 'video timestamp:', timestamp
np.save('images/%d_video' % timestamp, video)
def show_depth():
global threshold, current_depth, closest, distance
depth, timestamp = freenect.sync_get_depth()
#save_depth(timestamp, depth)
depthm = np.ma.masked_values(depth, 2047)
depthm = depth
amin = depthm.argmin()
closest = np.unravel_index(amin, depthm.shape)
distance = 0.1236 * math.tan(depthm.flatten()[amin] / 2842.5 + 1.1863)
#print 'depth:', closest, amin, depthm.flatten()[amin], distance
depth = 255 * np.logical_and(depth >= current_depth - threshold,
depth <= current_depth + threshold)
depth = depth.astype(np.uint8)
image = cv.CreateImageHeader((depth.shape[1], depth.shape[0]),
cv.IPL_DEPTH_8U,
1)
cv.SetData(image, depth.tostring(),
depth.dtype.itemsize * depth.shape[1])
cv.ShowImage('Depth', image)
def show_video():
video, timestamp = freenect.sync_get_video()
#save_video(timestamp, video)
video = frame_convert.video_cv(video)
cv.Circle(video, (closest[1], closest[0]), 8, (0, 0, 255))
cv.Circle(video, (closest[1], closest[0]), 4, (0, 0, 255))
cv.ShowImage('Video', video)
cv.NamedWindow('Depth')
cv.NamedWindow('Video')
cv.CreateTrackbar('threshold', 'Depth', threshold, 500, change_threshold)
cv.CreateTrackbar('depth', 'Depth', current_depth, 2048, change_depth)
print('Press ESC in window to stop')
while 1:
show_depth()
show_video()
move_eyes()
if cv.WaitKey(5) == 27:
break