-
Notifications
You must be signed in to change notification settings - Fork 1
Running Train Code On Dataset
Chahat Deep Singh edited this page Jul 11, 2021
·
3 revisions
- Download the code by running cloning this repository
git clone https://github.com/prgumd/EVPropNet
You'll need the following dependencies to run our code.
- OpenCV 3.3
- TensorFlow 1.14 (GPU or CPU version)
- Appropriate Cuda and Cudnn version for your Tensorflow and Ubuntu version
- Matplotlib
- tqdm
- Numpy
- Termcolor
We've tested the code on both Ubuntu 16.04 and 18.04 using Tensorflow 1.14 on GPU using Python 3.6.
- The dataset can be downloaded from here.
Run the Train code by using the following command from the Code
folder
python3 Train.py --BasePath=<Path_to_Imgs_and_Labels> --NumEpochs=50 --MiniBatchSize=32 --CheckPointPath=<Path_to_CheckPoints>/ --LogsPath=<Paths_to_Logs>/ --LR=1e-4
Note: Log files can be upto 100 GBs for 200 epochs.
Sample command to run train code:
python3 Train.py --BasePath=/home/nitin/Datasets/DVSProp --NumEpochs=50 --MiniBatchSize=32 --CheckPointPath=/media/nitin/Education/DVSProp/CheckPoints/ --LogsPath=/media/nitin/Education/DVSProp/Logs/ --LR=1e-4
One can use the following command line arguments:
Commonly used:
-
--BasePath
: Base path of images. The base path MUST contains folders: 'Imgs' and 'Labels'. -
--MiniBatchSize
: Size of the MiniBatch to use -
--LoadCheckPoint
: Load Model from latest Checkpoint from CheckPointPath to continue training. (Do not use this flag if you want to train from beginning.) -
--CheckPointPath
: Path to the saved model -
--LogsPath
: Path to save Logs -
--LR
: Learning Rate -
--GPUDevice
: What GPU do you want to use? -1 for CPU. -
--ImgFormat
: Image extension
Deprecated:
--NetworkType
--UncType
--RemoveLogs
Rarely Used:
-
--DivTrain
: Factor to reduce Train data by per epoch, used for quick testing -
--NetworkName
: Name of network file. -
--InitNeurons
: Number of starting neurons. Use the same value that network was trained on. -
--Suffix
: Suffix for Naming Network, only used if you want to use multiple networks -
--GT
: Ground Truth Path