Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Levy distribution #1943

Merged
merged 3 commits into from
Jan 20, 2025
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions numpyro/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
InverseGamma,
Kumaraswamy,
Laplace,
Levy,
LKJCholesky,
Logistic,
LogNormal,
Expand Down Expand Up @@ -160,6 +161,7 @@
"Kumaraswamy",
"Laplace",
"LeftTruncatedDistribution",
"Levy",
"LKJ",
"LKJCholesky",
"Logistic",
Expand Down
68 changes: 68 additions & 0 deletions numpyro/distributions/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@
xlogy,
)
from jax.scipy.stats import norm as jax_norm
from jax.typing import ArrayLike

from numpyro.distributions import constraints
from numpyro.distributions.discrete import _to_logits_bernoulli
Expand Down Expand Up @@ -2966,3 +2967,70 @@ def infer_shapes(
batch_shape = lax.broadcast_shapes(concentration, matrix[:-2])
event_shape = matrix[-2:]
return batch_shape, event_shape


class Levy(Distribution):
r"""Lévy distribution is a special case of Lévy alpha-stable distribution.
Its probability density function is given by,

.. math::
f(x\mid \mu, c) = \sqrt{\frac{c}{2\pi(x-\mu)^{3}}} \exp\left(-\frac{c}{2(x-\mu)}\right), \qquad x > \mu

where :math:`\mu` is the location parameter and :math:`c` is the scale parameter.

:param loc: Location parameter.
:param scale: Scale parameter.
"""

arg_constraints = {
"loc": constraints.positive,
"scale": constraints.positive,
}

def __init__(self, loc, scale, *, validate_args=None):
self.loc, self.scale = promote_shapes(loc, scale)
batch_shape = lax.broadcast_shapes(jnp.shape(loc), jnp.shape(scale))
self._support = constraints.greater_than(loc)
super(Levy, self).__init__(batch_shape, validate_args=validate_args)

@constraints.dependent_property(is_discrete=False)
def support(self):
return self._support

@validate_sample
def log_prob(self, value):
r"""Compute the log probability density function of the Lévy distribution.

.. math::
\log f(x\mid \mu, c) = \frac{1}{2}\log\left(\frac{c}{2\pi}\right) - \frac{c}{2(x-\mu)}
- \frac{3}{2}\log(x-\mu), \qquad x > \mu
"""
shifted_value = value - self.loc
return -0.5 * (
jnp.log(2.0 * jnp.pi) - jnp.log(self.scale) + self.scale / shifted_value
) - 1.5 * jnp.log(shifted_value)

def sample(self, key: ArrayLike, sample_shape: tuple[int, ...] = ()) -> ArrayLike:
assert is_prng_key(key)
u = random.uniform(key, shape=sample_shape + self.batch_shape)
return self.icdf(u)

def icdf(self, q: ArrayLike) -> ArrayLike:
return self.loc + self.scale * jnp.power(ndtri(1 - 0.5 * q), -2)

def cdf(self, value: ArrayLike) -> ArrayLike:
inv_standardized = self.scale / (value - self.loc)
return 2.0 - 2.0 * ndtr(jnp.sqrt(inv_standardized))

@property
def mean(self) -> ArrayLike:
return jnp.broadcast_to(jnp.inf, self.batch_shape)

@property
def variance(self) -> ArrayLike:
return jnp.broadcast_to(jnp.inf, self.batch_shape)

def entropy(self) -> ArrayLike:
return jnp.broadcast_to(
0.5 + 1.5 * jnp.euler_gamma + 0.5 * jnp.log(16 * jnp.pi), self.batch_shape
) + jnp.log(self.scale)
4 changes: 4 additions & 0 deletions test/test_distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -456,6 +456,7 @@ def __init__(
),
dist.Wishart: _wishart_to_scipy,
_TruncatedNormal: _truncnorm_to_scipy,
dist.Levy: lambda loc, scale: osp.levy(loc=loc, scale=scale),
}


Expand Down Expand Up @@ -933,6 +934,9 @@ def get_sp_dist(jax_dist):
T(dist.DoublyTruncatedPowerLaw, np.pi, 5.0, 50.0),
T(dist.DoublyTruncatedPowerLaw, -1.0, 5.0, 50.0),
T(dist.DoublyTruncatedPowerLaw, np.pi, 1.0, 2.0),
T(dist.Levy, 0.0, 1.0),
T(dist.Levy, 0.0, np.array([1.0, 2.0, 10.0])),
T(dist.Levy, np.array([1.0, 2.0, 10.0]), np.pi),
]

DIRECTIONAL = [
Expand Down
Loading