-
Notifications
You must be signed in to change notification settings - Fork 654
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
2023-08-02 nightly release (732c94a)
- Loading branch information
pytorchbot
committed
Aug 2, 2023
1 parent
12c6cb9
commit cb21482
Showing
5 changed files
with
341 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
311 changes: 311 additions & 0 deletions
311
examples/tutorials/asr_inference_with_cuda_ctc_decoder_tutorial.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,311 @@ | ||
""" | ||
ASR Inference with CUDA CTC Decoder | ||
==================================== | ||
**Author**: `Yuekai Zhang <[email protected]>`__ | ||
This tutorial shows how to perform speech recognition inference using a | ||
CUDA-based CTC beam search decoder. | ||
We demonstrate this on a pretrained | ||
`Zipformer <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless7_ctc>`__ | ||
model from `Next-gen Kaldi <https://nadirapovey.com/next-gen-kaldi-what-is-it>`__ project. | ||
""" | ||
|
||
###################################################################### | ||
# Overview | ||
# -------- | ||
# | ||
# Beam search decoding works by iteratively expanding text hypotheses (beams) | ||
# with next possible characters, and maintaining only the hypotheses with the | ||
# highest scores at each time step. | ||
# | ||
# The underlying implementation uses cuda to acclerate the whole decoding process | ||
# A mathematical formula for the decoder can be | ||
# found in the `paper <https://arxiv.org/pdf/1408.2873.pdf>`__, and | ||
# a more detailed algorithm can be found in this `blog | ||
# <https://distill.pub/2017/ctc/>`__. | ||
# | ||
# Running ASR inference using a CUDA CTC Beam Search decoder | ||
# requires the following components | ||
# | ||
# - Acoustic Model: model predicting modeling units (BPE in this tutorial) from acoustic features | ||
# - BPE Model: the byte-pair encoding (BPE) tokenizer file | ||
# | ||
|
||
|
||
###################################################################### | ||
# Acoustic Model and Set Up | ||
# ------------------------- | ||
# | ||
# First we import the necessary utilities and fetch the data that we are | ||
# working with | ||
# | ||
|
||
import torch | ||
import torchaudio | ||
|
||
print(torch.__version__) | ||
print(torchaudio.__version__) | ||
|
||
###################################################################### | ||
# | ||
|
||
import time | ||
from pathlib import Path | ||
|
||
import IPython | ||
import sentencepiece as spm | ||
from torchaudio.models.decoder import cuda_ctc_decoder | ||
from torchaudio.utils import download_asset | ||
|
||
###################################################################### | ||
# | ||
# We use the pretrained | ||
# `Zipformer <https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01>`__ | ||
# model that is trained on the `LibriSpeech | ||
# dataset <http://www.openslr.org/12>`__. The model is jointly trained with CTC and Transducer loss functions. | ||
# In this tutorial, we only use CTC head of the model. | ||
|
||
|
||
def download_asset_external(url, key): | ||
path = Path(torch.hub.get_dir()) / "torchaudio" / Path(key) | ||
if not path.exists(): | ||
path.parent.mkdir(parents=True, exist_ok=True) | ||
torch.hub.download_url_to_file(url, path) | ||
return str(path) | ||
|
||
|
||
url_prefix = "https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01" | ||
model_link = f"{url_prefix}/resolve/main/exp/cpu_jit.pt" | ||
model_path = download_asset_external(model_link, "cuda_ctc_decoder/cpu_jit.pt") | ||
|
||
|
||
###################################################################### | ||
# We will load a sample from the LibriSpeech test-other dataset. | ||
# | ||
|
||
speech_file = download_asset("tutorial-assets/ctc-decoding/1688-142285-0007.wav") | ||
waveform, sample_rate = torchaudio.load(speech_file) | ||
assert sample_rate == 16000 | ||
IPython.display.Audio(speech_file) | ||
|
||
|
||
###################################################################### | ||
# The transcript corresponding to this audio file is | ||
# | ||
# .. code-block:: | ||
# | ||
# i really was very much afraid of showing him how much shocked i was at some parts of what he said | ||
# | ||
|
||
|
||
###################################################################### | ||
# Files and Data for Decoder | ||
# -------------------------- | ||
# | ||
# Next, we load in our token from BPE model, which is the tokenizer for decoding. | ||
# | ||
|
||
|
||
###################################################################### | ||
# Tokens | ||
# ~~~~~~ | ||
# | ||
# The tokens are the possible symbols that the acoustic model can predict, | ||
# including the blank symbol in CTC. In this tutorial, it includes 500 BPE tokens. | ||
# It can either be passed in as a | ||
# file, where each line consists of the tokens corresponding to the same | ||
# index, or as a list of tokens, each mapping to a unique index. | ||
# | ||
# .. code-block:: | ||
# | ||
# # tokens | ||
# <blk> | ||
# <sos/eos> | ||
# <unk> | ||
# S | ||
# _THE | ||
# _A | ||
# T | ||
# _AND | ||
# ... | ||
# | ||
bpe_link = f"{url_prefix}/resolve/main/data/lang_bpe_500/bpe.model" | ||
bpe_path = download_asset_external(bpe_link, "cuda_ctc_decoder/bpe.model") | ||
|
||
bpe_model = spm.SentencePieceProcessor() | ||
bpe_model.load(bpe_path) | ||
tokens = [bpe_model.id_to_piece(id) for id in range(bpe_model.get_piece_size())] | ||
print(tokens) | ||
|
||
###################################################################### | ||
# Construct CUDA Decoder | ||
# ---------------------- | ||
# In this tutorial, we will construct a CUDA beam search decoder. | ||
# The decoder can be constructed using the factory function | ||
# :py:func:`~torchaudio.models.decoder.cuda_ctc_decoder`. | ||
# | ||
|
||
cuda_decoder = cuda_ctc_decoder(tokens, nbest=10, beam_size=10, blank_skip_threshold=0.95) | ||
###################################################################### | ||
# Run Inference | ||
# ------------- | ||
# | ||
# Now that we have the data, acoustic model, and decoder, we can perform | ||
# inference. The output of the beam search decoder is of type | ||
# :py:class:`~torchaudio.models.decoder.CUCTCHypothesis`, consisting of the | ||
# predicted token IDs, words (symbols corresponding to the token IDs), and hypothesis scores. | ||
# Recall the transcript corresponding to the | ||
# waveform is | ||
# | ||
# .. code-block:: | ||
# | ||
# i really was very much afraid of showing him how much shocked i was at some parts of what he said | ||
# | ||
|
||
actual_transcript = "i really was very much afraid of showing him how much shocked i was at some parts of what he said" | ||
actual_transcript = actual_transcript.split() | ||
|
||
device = torch.device("cuda", 0) | ||
acoustic_model = torch.jit.load(model_path) | ||
acoustic_model.to(device) | ||
acoustic_model.eval() | ||
|
||
waveform = waveform.to(device) | ||
|
||
feat = torchaudio.compliance.kaldi.fbank(waveform, num_mel_bins=80, snip_edges=False) | ||
feat = feat.unsqueeze(0) | ||
feat_lens = torch.tensor(feat.size(1), device=device).unsqueeze(0) | ||
|
||
encoder_out, encoder_out_lens = acoustic_model.encoder(feat, feat_lens) | ||
nnet_output = acoustic_model.ctc_output(encoder_out) | ||
log_prob = torch.nn.functional.log_softmax(nnet_output, -1) | ||
|
||
print(f"The shape of log_prob: {log_prob.shape}, the shape of encoder_out_lens: {encoder_out_lens.shape}") | ||
|
||
###################################################################### | ||
# The cuda ctc decoder gives the following result. | ||
# | ||
|
||
results = cuda_decoder(log_prob, encoder_out_lens.to(torch.int32)) | ||
beam_search_transcript = bpe_model.decode(results[0][0].tokens).lower() | ||
beam_search_wer = torchaudio.functional.edit_distance(actual_transcript, beam_search_transcript.split()) / len( | ||
actual_transcript | ||
) | ||
|
||
print(f"Transcript: {beam_search_transcript}") | ||
print(f"WER: {beam_search_wer}") | ||
|
||
###################################################################### | ||
# Beam Search Decoder Parameters | ||
# ------------------------------ | ||
# | ||
# In this section, we go a little bit more in depth about some different | ||
# parameters and tradeoffs. For the full list of customizable parameters, | ||
# please refer to the | ||
# :py:func:`documentation <torchaudio.models.decoder.cuda_ctc_decoder>`. | ||
# | ||
|
||
|
||
###################################################################### | ||
# Helper Function | ||
# ~~~~~~~~~~~~~~~ | ||
# | ||
|
||
|
||
def print_decoded(cuda_decoder, bpe_model, log_prob, encoder_out_lens, param, param_value): | ||
start_time = time.monotonic() | ||
results = cuda_decoder(log_prob, encoder_out_lens.to(torch.int32)) | ||
decode_time = time.monotonic() - start_time | ||
transcript = bpe_model.decode(results[0][0].tokens).lower() | ||
score = results[0][0].score | ||
print(f"{param} {param_value:<3}: {transcript} (score: {score:.2f}; {decode_time:.4f} secs)") | ||
|
||
|
||
###################################################################### | ||
# nbest | ||
# ~~~~~ | ||
# | ||
# This parameter indicates the number of best hypotheses to return. For | ||
# instance, by setting ``nbest=10`` when constructing the beam search | ||
# decoder earlier, we can now access the hypotheses with the top 10 scores. | ||
# | ||
|
||
for i in range(10): | ||
transcript = bpe_model.decode(results[0][i].tokens).lower() | ||
score = results[0][i].score | ||
print(f"{transcript} (score: {score})") | ||
|
||
|
||
###################################################################### | ||
# beam size | ||
# ~~~~~~~~~ | ||
# | ||
# The ``beam_size`` parameter determines the maximum number of best | ||
# hypotheses to hold after each decoding step. Using larger beam sizes | ||
# allows for exploring a larger range of possible hypotheses which can | ||
# produce hypotheses with higher scores, but it does not provide additional gains beyond a certain point. | ||
# We recommend to set beam_size=10 for cuda beam search decoder. | ||
# | ||
# In the example below, we see improvement in decoding quality as we | ||
# increase beam size from 1 to 3, but notice how using a beam size | ||
# of 3 provides the same output as beam size 10. | ||
# | ||
|
||
beam_sizes = [1, 2, 3, 10] | ||
|
||
for beam_size in beam_sizes: | ||
beam_search_decoder = cuda_ctc_decoder( | ||
tokens, | ||
nbest=1, | ||
beam_size=beam_size, | ||
blank_skip_threshold=0.95, | ||
) | ||
print_decoded(beam_search_decoder, bpe_model, log_prob, encoder_out_lens, "beam size", beam_size) | ||
|
||
|
||
###################################################################### | ||
# blank skip threshold | ||
# ~~~~~~~~~~~~~~~~~~~~ | ||
# | ||
# The ``blank_skip_threshold`` parameter is used to prune the frames which have large blank probability. | ||
# Pruning these frames with a good blank_skip_threshold could speed up decoding | ||
# process a lot while no accuracy drop. | ||
# Since the rule of CTC, we would keep at least one blank frame between two non-blank frames | ||
# to avoid mistakenly merge two consecutive identical symbols. | ||
# We recommend to set blank_skip_threshold=0.95 for cuda beam search decoder. | ||
# | ||
|
||
blank_skip_probs = [0.25, 0.95, 1.0] | ||
|
||
for blank_skip_prob in blank_skip_probs: | ||
beam_search_decoder = cuda_ctc_decoder( | ||
tokens, | ||
nbest=10, | ||
beam_size=10, | ||
blank_skip_threshold=blank_skip_prob, | ||
) | ||
print_decoded(beam_search_decoder, bpe_model, log_prob, encoder_out_lens, "blank_skip_threshold", blank_skip_prob) | ||
|
||
del cuda_decoder | ||
|
||
###################################################################### | ||
# Benchmark with flashlight CPU decoder | ||
# ------------------------------------- | ||
# We benchmark the throughput and accuracy between CUDA decoder and CPU decoder using librispeech test_other set. | ||
# To reproduce below benchmark results, you may refer `here <https://github.com/pytorch/audio/tree/main/examples/asr/librispeech_cuda_ctc_decoder>`__. | ||
# | ||
# +--------------+------------------------------------------+---------+-----------------------+-----------------------------+ | ||
# | Decoder | Setting | WER (%) | N-Best Oracle WER (%) | Decoder Cost Time (seconds) | | ||
# +==============+==========================================+=========+=======================+=============================+ | ||
# | CUDA decoder | blank_skip_threshold 0.95 | 5.81 | 4.11 | 2.57 | | ||
# +--------------+------------------------------------------+---------+-----------------------+-----------------------------+ | ||
# | CUDA decoder | blank_skip_threshold 1.0 (no frame-skip) | 5.81 | 4.09 | 6.24 | | ||
# +--------------+------------------------------------------+---------+-----------------------+-----------------------------+ | ||
# | CPU decoder | beam_size_token 10 | 5.86 | 4.30 | 28.61 | | ||
# +--------------+------------------------------------------+---------+-----------------------+-----------------------------+ | ||
# | CPU decoder | beam_size_token 500 | 5.86 | 4.30 | 791.80 | | ||
# +--------------+------------------------------------------+---------+-----------------------+-----------------------------+ | ||
# | ||
# From the above table, CUDA decoder could give a slight improvement in WER and a significant increase in throughput. |
Oops, something went wrong.