-
-
Notifications
You must be signed in to change notification settings - Fork 624
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add HSIC metric * minor update on docstring * add reference to the HSIC formula in docstring * update version directive * fix formatting issue * add type hints * accumulate HSIC value for each batch * update test to clip value for each batch * fix accumulator device error * fix error in making y * fix test to use the same linear layer across metric_devices * Revert "fix test to use the same linear layer across metric_devices" This reverts commit cb71355. * Fixed distributed tests * Fixed code formatting errors --------- Co-authored-by: vfdev <[email protected]>
- Loading branch information
Showing
4 changed files
with
361 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
from typing import Callable, Sequence, Union | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
from ignite.exceptions import NotComputableError | ||
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce | ||
|
||
__all__ = ["HSIC"] | ||
|
||
|
||
class HSIC(Metric): | ||
r"""Calculates the `Hilbert-Schmidt Independence Criterion (HSIC) | ||
<https://papers.nips.cc/paper_files/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html>`_. | ||
.. math:: | ||
\text{HSIC}(X,Y) = \frac{1}{B(B-3)}\left[ \text{tr}(\tilde{\mathbf{K}}\tilde{\mathbf{L}}) | ||
+ \frac{\mathbf{1}^\top \tilde{\mathbf{K}} \mathbf{11}^\top \tilde{\mathbf{L}} \mathbf{1}}{(B-1)(B-2)} | ||
-\frac{2}{B-2}\mathbf{1}^\top \tilde{\mathbf{K}}\tilde{\mathbf{L}} \mathbf{1} \right] | ||
where :math:`B` is the batch size, and :math:`\tilde{\mathbf{K}}` | ||
and :math:`\tilde{\mathbf{L}}` are the Gram matrices of | ||
the Gaussian RBF kernel with their diagonal entries being set to zero. | ||
HSIC measures non-linear statistical independence between features :math:`X` and :math:`Y`. | ||
HSIC becomes zero if and only if :math:`X` and :math:`Y` are independent. | ||
This metric computes the unbiased estimator of HSIC proposed in | ||
`Song et al. (2012) <https://jmlr.csail.mit.edu/papers/v13/song12a.html>`_. | ||
The HSIC is estimated using Eq. (5) of the paper for each batch and the average is accumulated. | ||
Each batch must contain at least four samples. | ||
- ``update`` must receive output of the form ``(y_pred, y)``. | ||
Args: | ||
sigma_x: bandwidth of the kernel for :math:`X`. | ||
If negative, a heuristic value determined by the median of the distances between | ||
the samples is used. Default: -1 | ||
sigma_y: bandwidth of the kernel for :math:`Y`. | ||
If negative, a heuristic value determined by the median of the distances | ||
between the samples is used. Default: -1 | ||
ignore_invalid_batch: If ``True``, computation for a batch with less than four samples is skipped. | ||
If ``False``, ``ValueError`` is raised when received such a batch. | ||
output_transform: a callable that is used to transform the | ||
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the | ||
form expected by the metric. This can be useful if, for example, you have a multi-output model and | ||
you want to compute the metric with respect to one of the outputs. | ||
By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. | ||
device: specifies which device updates are accumulated on. Setting the | ||
metric's device to be the same as your ``update`` arguments ensures the ``update`` method is | ||
non-blocking. By default, CPU. | ||
skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be | ||
true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` | ||
Alternatively, ``output_transform`` can be used to handle this. | ||
Examples: | ||
To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. | ||
The output of the engine's ``process_function`` needs to be in the format of | ||
``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added | ||
to the metric to transform the output into the form expected by the metric. | ||
``y_pred`` and ``y`` should have the same shape. | ||
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. | ||
.. include:: defaults.rst | ||
:start-after: :orphan: | ||
.. testcode:: | ||
metric = HSIC() | ||
metric.attach(default_evaluator, "hsic") | ||
X = torch.tensor([[0., 1., 2., 3., 4.], | ||
[5., 6., 7., 8., 9.], | ||
[10., 11., 12., 13., 14.], | ||
[15., 16., 17., 18., 19.], | ||
[20., 21., 22., 23., 24.], | ||
[25., 26., 27., 28., 29.], | ||
[30., 31., 32., 33., 34.], | ||
[35., 36., 37., 38., 39.], | ||
[40., 41., 42., 43., 44.], | ||
[45., 46., 47., 48., 49.]]) | ||
Y = torch.sin(X * torch.pi * 2 / 50) | ||
state = default_evaluator.run([[X, Y]]) | ||
print(state.metrics["hsic"]) | ||
.. testoutput:: | ||
0.09226646274328232 | ||
.. versionadded:: 0.5.2 | ||
""" | ||
|
||
def __init__( | ||
self, | ||
sigma_x: float = -1, | ||
sigma_y: float = -1, | ||
ignore_invalid_batch: bool = True, | ||
output_transform: Callable = lambda x: x, | ||
device: Union[str, torch.device] = torch.device("cpu"), | ||
skip_unrolling: bool = False, | ||
): | ||
super().__init__(output_transform, device, skip_unrolling=skip_unrolling) | ||
|
||
self.sigma_x = sigma_x | ||
self.sigma_y = sigma_y | ||
self.ignore_invalid_batch = ignore_invalid_batch | ||
|
||
_state_dict_all_req_keys = ("_sum_of_hsic", "_num_batches") | ||
|
||
@reinit__is_reduced | ||
def reset(self) -> None: | ||
self._sum_of_hsic = torch.tensor(0.0, device=self._device) | ||
self._num_batches = 0 | ||
|
||
@reinit__is_reduced | ||
def update(self, output: Sequence[Tensor]) -> None: | ||
X = output[0].detach().flatten(start_dim=1) | ||
Y = output[1].detach().flatten(start_dim=1) | ||
b = X.shape[0] | ||
|
||
if b <= 3: | ||
if self.ignore_invalid_batch: | ||
return | ||
else: | ||
raise ValueError(f"A batch must contain more than four samples, got only {b} samples.") | ||
|
||
mask = 1.0 - torch.eye(b, device=X.device) | ||
|
||
xx = X @ X.T | ||
rx = xx.diag().unsqueeze(0).expand_as(xx) | ||
dxx = rx.T + rx - xx * 2 | ||
|
||
vx: Union[Tensor, float] | ||
if self.sigma_x < 0: | ||
vx = torch.quantile(dxx, 0.5) | ||
else: | ||
vx = self.sigma_x**2 | ||
K = torch.exp(-0.5 * dxx / vx) * mask | ||
|
||
yy = Y @ Y.T | ||
ry = yy.diag().unsqueeze(0).expand_as(yy) | ||
dyy = ry.T + ry - yy * 2 | ||
|
||
vy: Union[Tensor, float] | ||
if self.sigma_y < 0: | ||
vy = torch.quantile(dyy, 0.5) | ||
else: | ||
vy = self.sigma_y**2 | ||
L = torch.exp(-0.5 * dyy / vy) * mask | ||
|
||
KL = K @ L | ||
trace = KL.trace() | ||
second_term = K.sum() * L.sum() / ((b - 1) * (b - 2)) | ||
third_term = KL.sum() / (b - 2) | ||
|
||
hsic = trace + second_term - third_term * 2.0 | ||
hsic /= b * (b - 3) | ||
hsic = torch.clamp(hsic, min=0.0) # HSIC must not be negative | ||
self._sum_of_hsic += hsic.to(self._device) | ||
|
||
self._num_batches += 1 | ||
|
||
@sync_all_reduce("_sum_of_hsic", "_num_batches") | ||
def compute(self) -> float: | ||
if self._num_batches == 0: | ||
raise NotComputableError("HSIC must have at least one batch before it can be computed.") | ||
|
||
return self._sum_of_hsic.item() / self._num_batches |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
from typing import Tuple | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
import torch | ||
from torch import nn, Tensor | ||
|
||
import ignite.distributed as idist | ||
from ignite.engine import Engine | ||
from ignite.exceptions import NotComputableError | ||
from ignite.metrics import HSIC | ||
|
||
|
||
def np_hsic(x: Tensor, y: Tensor, sigma_x: float = -1, sigma_y: float = -1) -> float: | ||
x_np = x.detach().cpu().numpy() | ||
y_np = y.detach().cpu().numpy() | ||
b = x_np.shape[0] | ||
|
||
ii, jj = np.meshgrid(np.arange(b), np.arange(b), indexing="ij") | ||
mask = 1.0 - np.eye(b) | ||
|
||
dxx = np.square(x_np[ii] - x_np[jj]).sum(axis=2) | ||
if sigma_x < 0: | ||
vx = np.median(dxx) | ||
else: | ||
vx = sigma_x * sigma_x | ||
K = np.exp(-0.5 * dxx / vx) * mask | ||
|
||
dyy = np.square(y_np[ii] - y_np[jj]).sum(axis=2) | ||
if sigma_y < 0: | ||
vy = np.median(dyy) | ||
else: | ||
vy = sigma_y * sigma_y | ||
L = np.exp(-0.5 * dyy / vy) * mask | ||
|
||
KL = K @ L | ||
ones = np.ones(b) | ||
hsic = np.trace(KL) + (ones @ K @ ones) * (ones @ L @ ones) / ((b - 1) * (b - 2)) - ones @ KL @ ones * 2 / (b - 2) | ||
hsic /= b * (b - 3) | ||
hsic = np.clip(hsic, 0.0, None) | ||
return hsic | ||
|
||
|
||
def test_zero_batch(): | ||
hsic = HSIC() | ||
with pytest.raises(NotComputableError, match=r"HSIC must have at least one batch before it can be computed"): | ||
hsic.compute() | ||
|
||
|
||
def test_invalid_batch(): | ||
hsic = HSIC(ignore_invalid_batch=False) | ||
X = torch.tensor([[1, 2, 3]]).float() | ||
Y = torch.tensor([[4, 5, 6]]).float() | ||
with pytest.raises(ValueError, match=r"A batch must contain more than four samples, got only"): | ||
hsic.update((X, Y)) | ||
|
||
|
||
@pytest.fixture(params=[0, 1, 2]) | ||
def test_case(request) -> Tuple[Tensor, Tensor, int]: | ||
if request.param == 0: | ||
# independent | ||
N = 100 | ||
b = 10 | ||
x, y = torch.randn((N, 50)), torch.randn((N, 30)) | ||
elif request.param == 1: | ||
# linearly dependent | ||
N = 100 | ||
b = 10 | ||
x = torch.normal(1.0, 2.0, size=(N, 10)) | ||
y = x @ torch.rand(10, 15) * 3 + torch.randn(N, 15) * 1e-4 | ||
else: | ||
# non-linearly dependent | ||
N = 200 | ||
b = 20 | ||
x = torch.randn(N, 5) | ||
y = x @ torch.normal(0.0, torch.pi, size=(5, 3)) | ||
y = ( | ||
torch.stack([torch.sin(y[:, 0]), torch.cos(y[:, 1]), torch.exp(y[:, 2])], dim=1) | ||
+ torch.randn_like(y) * 1e-4 | ||
) | ||
|
||
return x, y, b | ||
|
||
|
||
@pytest.mark.parametrize("n_times", range(3)) | ||
@pytest.mark.parametrize("sigma_x", [-1.0, 1.0]) | ||
@pytest.mark.parametrize("sigma_y", [-1.0, 1.0]) | ||
def test_compute(n_times, sigma_x: float, sigma_y: float, test_case: Tuple[Tensor, Tensor, int]): | ||
x, y, batch_size = test_case | ||
|
||
hsic = HSIC(sigma_x=sigma_x, sigma_y=sigma_y) | ||
|
||
hsic.reset() | ||
|
||
np_hsic_sum = 0.0 | ||
n_iters = y.shape[0] // batch_size | ||
for i in range(n_iters): | ||
idx = i * batch_size | ||
x_batch = x[idx : idx + batch_size] | ||
y_batch = y[idx : idx + batch_size] | ||
|
||
hsic.update((x_batch, y_batch)) | ||
np_hsic_sum += np_hsic(x_batch, y_batch, sigma_x, sigma_y) | ||
expected_hsic = np_hsic_sum / n_iters | ||
|
||
assert isinstance(hsic.compute(), float) | ||
assert pytest.approx(expected_hsic, abs=2e-5) == hsic.compute() | ||
|
||
|
||
def test_accumulator_detached(): | ||
hsic = HSIC() | ||
|
||
x = torch.rand(10, 10, dtype=torch.float) | ||
y = torch.rand(10, 10, dtype=torch.float) | ||
hsic.update((x, y)) | ||
|
||
assert not hsic._sum_of_hsic.requires_grad | ||
|
||
|
||
@pytest.mark.usefixtures("distributed") | ||
class TestDistributed: | ||
@pytest.mark.parametrize("sigma_x", [-1.0, 1.0]) | ||
@pytest.mark.parametrize("sigma_y", [-1.0, 1.0]) | ||
def test_integration(self, sigma_x: float, sigma_y: float): | ||
tol = 2e-5 | ||
n_iters = 100 | ||
batch_size = 20 | ||
n_dims_x = 100 | ||
n_dims_y = 50 | ||
|
||
rank = idist.get_rank() | ||
torch.manual_seed(12 + rank) | ||
|
||
device = idist.device() | ||
metric_devices = [torch.device("cpu")] | ||
if device.type != "xla": | ||
metric_devices.append(device) | ||
|
||
for metric_device in metric_devices: | ||
x = torch.randn((n_iters * batch_size, n_dims_x)).float().to(device) | ||
|
||
lin = nn.Linear(n_dims_x, n_dims_y).to(device) | ||
y = torch.sin(lin(x) * 100) + torch.randn(n_iters * batch_size, n_dims_y) * 1e-4 | ||
|
||
def data_loader(i, input_x, input_y): | ||
return input_x[i * batch_size : (i + 1) * batch_size], input_y[i * batch_size : (i + 1) * batch_size] | ||
|
||
engine = Engine(lambda e, i: data_loader(i, x, y)) | ||
|
||
m = HSIC(sigma_x=sigma_x, sigma_y=sigma_y, device=metric_device) | ||
m.attach(engine, "hsic") | ||
|
||
data = list(range(n_iters)) | ||
engine.run(data=data, max_epochs=1) | ||
|
||
assert "hsic" in engine.state.metrics | ||
res = engine.state.metrics["hsic"] | ||
|
||
x = idist.all_gather(x) | ||
y = idist.all_gather(y) | ||
total_n_iters = idist.all_reduce(n_iters) | ||
|
||
np_res = 0.0 | ||
for i in range(total_n_iters): | ||
x_batch, y_batch = data_loader(i, x, y) | ||
np_res += np_hsic(x_batch, y_batch, sigma_x, sigma_y) | ||
|
||
expected_hsic = np_res / total_n_iters | ||
assert pytest.approx(expected_hsic, abs=tol) == res | ||
|
||
def test_accumulator_device(self): | ||
device = idist.device() | ||
metric_devices = [torch.device("cpu")] | ||
if device.type != "xla": | ||
metric_devices.append(device) | ||
for metric_device in metric_devices: | ||
hsic = HSIC(device=metric_device) | ||
|
||
for dev in (hsic._device, hsic._sum_of_hsic.device): | ||
assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" | ||
|
||
x = torch.zeros(10, 10).float() | ||
y = torch.ones(10, 10).float() | ||
hsic.update((x, y)) | ||
|
||
for dev in (hsic._device, hsic._sum_of_hsic.device): | ||
assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" |