-
Notifications
You must be signed in to change notification settings - Fork 491
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Decouple and run MLP runs for comparisons
- Loading branch information
1 parent
bb1dbaf
commit 4d92118
Showing
7 changed files
with
218 additions
and
154 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,164 +1,27 @@ | ||
import os | ||
import sys | ||
from typing import Optional | ||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from torch import nn | ||
import torch.optim as optim | ||
|
||
import args_parse | ||
import torch_xla | ||
import torch_xla.core.xla_model as xm | ||
import torch_xla.debug.profiler as xp | ||
import torch_xla.distributed.parallel_loader as pl | ||
import torch_xla.distributed.spmd as xs | ||
import torch_xla.runtime as xr | ||
import torch_xla.utils.utils as xu | ||
from torch_xla.distributed.spmd import Mesh | ||
from torch_xla.utils.checkpoint import checkpoint | ||
import test_xla_sharding_base | ||
|
||
parent_folder = os.path.dirname(os.path.dirname(__file__)) | ||
sys.path.append(parent_folder) | ||
from utils.train_spmd_linear_model import train_and_evaluate | ||
|
||
MODEL_OPTS = { | ||
'--sharding': { | ||
'choices': ['batch', 'megatron-lm', 'fsdp'], | ||
'nargs': '+', | ||
'default': [], | ||
}, | ||
'--input_dim': { | ||
'type': int, | ||
'default': 16834, | ||
}, | ||
'--train_dataset_len': { | ||
'type': int, | ||
'default': 1024 * 8, | ||
}, | ||
'--use_gradient_checkpointing': { | ||
'action': 'store_true', | ||
} | ||
} | ||
|
||
FLAGS = {} | ||
PROFILER_SERVER = None | ||
class TestSPMDLinearModel(test_xla_sharding_base.XlaShardingTest): | ||
|
||
|
||
class SimpleLinear(nn.Module): | ||
NUM_CLASSES = 3 | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.layers = torch.nn.Sequential( | ||
nn.Linear(FLAGS.input_dim, FLAGS.input_dim // 2), | ||
nn.ReLU(), | ||
nn.Linear(FLAGS.input_dim // 2, 3), | ||
# # Add an additional 3x3 layer at the end to ensure the final layer | ||
# # is not sharded. | ||
nn.Linear(3, self.NUM_CLASSES), | ||
) | ||
|
||
def forward(self, x): | ||
if FLAGS.use_gradient_checkpointing: | ||
for n_l, layer in enumerate(self.layers): | ||
# Apply gradient checkpointing for reduced memory footprint. | ||
# This would result in increased computation cost. | ||
if n_l > 0: | ||
x = checkpoint(layer, x) | ||
else: | ||
x = layer(x) | ||
else: | ||
x = self.layers(x) | ||
return x | ||
|
||
|
||
def train(): | ||
device = xm.xla_device() | ||
torch.manual_seed(42) | ||
model = SimpleLinear().to(device) | ||
print('===> Preparing data..') | ||
train_loader = xu.SampleGenerator( | ||
data=(torch.randn(FLAGS.batch_size, FLAGS.input_dim), | ||
torch.randint( | ||
0, model.NUM_CLASSES, (FLAGS.batch_size,), dtype=torch.int64)), | ||
sample_count=FLAGS.train_dataset_len // FLAGS.batch_size) | ||
|
||
num_devices = xr.global_runtime_device_count() | ||
print(f'num_devices: {num_devices}') | ||
# Define a mesh with all devices along one axis | ||
mesh_shape = (num_devices, 1) | ||
device_ids = np.arange(num_devices) | ||
mesh = Mesh(device_ids, mesh_shape, ('x', 'y')) | ||
|
||
if 'batch' in FLAGS.sharding: | ||
train_loader = pl.MpDeviceLoader( | ||
train_loader, device, input_sharding=xs.ShardingSpec(mesh, (0, 1))) | ||
|
||
if 'fsdp' in FLAGS.sharding: | ||
train_loader = pl.MpDeviceLoader( | ||
train_loader, device, input_sharding=xs.ShardingSpec(mesh, (0, 1))) | ||
print('Sharding model weights') | ||
# Shard the weights according to their 0th dim | ||
xs.mark_sharding(model.layers[0].weight, mesh, (0, 1)) | ||
xs.mark_sharding(model.layers[2].weight, mesh, (0, 1)) | ||
|
||
if 'megatron-lm' in FLAGS.sharding: | ||
print('Sharding model weights') | ||
# Shard the first layer's weights row-wise | ||
xs.mark_sharding(model.layers[0].weight, mesh, (0, 1)) | ||
# Shard the second layer's weights column-wise | ||
xs.mark_sharding(model.layers[2].weight, mesh, (1, 0)) | ||
|
||
optimizer = optim.SGD(model.parameters(), lr=FLAGS.lr) | ||
|
||
loss_fn = nn.CrossEntropyLoss() | ||
|
||
def train_loop_fn(loader, epoch): | ||
model.train() | ||
for step, (data, target) in enumerate(loader): | ||
with xp.StepTrace('train_linear_model'): | ||
with xp.Trace('build_graph'): | ||
x = data.to(device) | ||
y = target.to(device) | ||
optimizer.zero_grad() | ||
output = model(x) | ||
loss = loss_fn(output, y) | ||
losses.append(loss.clone().detach()) | ||
loss.backward() | ||
optimizer.step() | ||
xm.mark_step() | ||
if step % FLAGS.log_steps == 0: | ||
print(f"Epoch {epoch} step {step} loss {loss}") | ||
|
||
losses = [] | ||
for epoch in range(FLAGS.num_epochs): | ||
train_loop_fn(train_loader, epoch) | ||
return losses, model | ||
|
||
|
||
def train_and_evaluate(): | ||
default_config = { | ||
'batch_size': 128, | ||
'num_epochs': 1, | ||
'lr': 0.1, | ||
'log_steps': 8, | ||
'opts': MODEL_OPTS.items() | ||
} | ||
|
||
global PROFILER_SERVER, FLAGS | ||
FLAGS = args_parse.parse_common_options(**default_config) | ||
if FLAGS.profile: | ||
PROFILER_SERVER = xp.start_server(FLAGS.profiler_port) | ||
xr.use_spmd(auto=FLAGS.auto_spmd) | ||
print('Start training loop...') | ||
losses, m = train() | ||
t = torch.randn(10, FLAGS.input_dim).to(xm.xla_device()) | ||
return [loss.cpu().item() for loss in losses], m(t).cpu() | ||
def test_basic(self): | ||
print('Training loop with baseline') | ||
losses, result = train_and_evaluate() | ||
# Verify that the model losses are not zero. | ||
assert all(loss != 0 for loss in losses) | ||
# Verify that the model produces non-zero outputs. | ||
assert not torch.any(result == 0) | ||
|
||
|
||
if __name__ == '__main__': | ||
losses, result = train_and_evaluate() | ||
# Verify that the model losses are not zero. | ||
assert all(loss != 0 for loss in losses) | ||
# Verify that the model produces non-zero outputs. | ||
assert torch.all(result != 0) | ||
test = unittest.main() | ||
sys.exit(0 if test.result.wasSuccessful() else 1) |
51 changes: 51 additions & 0 deletions
51
test/spmd/test_train_spmd_linear_model_grad_checkpointing.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
from contextlib import contextmanager | ||
import os | ||
import sys | ||
import unittest | ||
|
||
import torch | ||
|
||
import test_xla_sharding_base | ||
|
||
parent_folder = os.path.dirname(os.path.dirname(__file__)) | ||
sys.path.append(parent_folder) | ||
from utils.train_spmd_linear_model import train_and_evaluate | ||
|
||
|
||
@contextmanager | ||
def extended_argv(args): | ||
original_argv = sys.argv[:] | ||
sys.argv.extend(args) | ||
try: | ||
yield | ||
finally: | ||
sys.argv = original_argv | ||
|
||
|
||
class TestSPMDLinearModelGradientCheckpointing( | ||
test_xla_sharding_base.XlaShardingTest): | ||
|
||
def test_gradient_checkpoint_matches(self): | ||
"""Verify that gradient checkpointing produces the same results and losses as the baseline.""" | ||
|
||
print('Training loop with baseline') | ||
with extended_argv([]): | ||
baseline_losses, baseline_result = train_and_evaluate() | ||
|
||
print('Training loop with gradient checkpointing') | ||
with extended_argv(['--use_gradient_checkpointing']): | ||
checkpointing_losses, checkpointing_result = train_and_evaluate() | ||
|
||
# Verify that the model losses are not zero, and that the runs match. | ||
assert all(loss != 0 for loss in baseline_losses) | ||
assert all( | ||
torch.allclose(baseline_loss, checkpointing_loss) for baseline_loss, | ||
checkpointing_loss in zip(baseline_losses, checkpointing_losses)) | ||
# Verify that the model produces non-zero outputs, and that the runs match. | ||
assert not torch.any(baseline_result == 0) | ||
assert torch.allclose(baseline_result, checkpointing_result) | ||
|
||
|
||
if __name__ == '__main__': | ||
test = unittest.main() | ||
sys.exit(0 if test.result.wasSuccessful() else 1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
Oops, something went wrong.