forked from ECP-WarpX/WarpX
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from radiasoft/rjn-merge2
merge the branch "rjn-merge2" into development
- Loading branch information
Showing
9 changed files
with
2,292 additions
and
32 deletions.
There are no files selected for viewing
300 changes: 300 additions & 0 deletions
300
Examples/Physics_applications/impact_ionization/PICMI_inputs_3d.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
#!/usr/bin/env python3 | ||
# | ||
# --- Input file for MCC testing | ||
|
||
import os | ||
os.environ["OMP_NUM_THREADS"] = "4" | ||
# sys.path.append("path_to_rsfusion") | ||
|
||
from pywarpx import picmi, particle_containers, callbacks | ||
|
||
import numpy as np | ||
|
||
import scipy.constants | ||
constants = picmi.constants | ||
|
||
from rsbeams.rsstats import kinematic | ||
|
||
|
||
########################## | ||
# Parameters to Set | ||
########################## | ||
|
||
self_consistent_fields = False | ||
n_beams = 1 #only implemented for a single beam | ||
|
||
interactions = {'ndt' : 1, #period to call rxns | ||
} | ||
|
||
diagnostics = {'directory' : 'ion_impact_0v', | ||
'HDF5_particle_diagnostic' : True, | ||
'HDF5_field_diagnostic' : False, | ||
} | ||
|
||
beam_specifics = {'injection_period' : 5, | ||
'diag_period' : 500, | ||
'radius' : 4.0e-3, #m | ||
'nmp' : 1, #Num macroparticles to emit per emission step | ||
} | ||
|
||
run_specifics = {'nx' : 64, | ||
'ny' : 64, | ||
'nz' : 32, | ||
'xmax' : 1.0, #m | ||
'ymax' : 1.0, #m | ||
'zmax' : 0.5, #m | ||
'dt' : 1.0e-10, #s | ||
'tmax' : 40.0e-6, #s | ||
} | ||
|
||
deuterium_specifics = {'species_type' : 'deuterium', | ||
'n_beams' : n_beams, | ||
'mass' : 1874.61e6, #eV/c^2 | ||
'v_x' : 1.696e6, #m/s | ||
'ke' : None, #eV | ||
'current' : 5.0e-4, #A | ||
'density' : None, #num/m^3 | ||
'charge' : scipy.constants.e, #C | ||
'time_start' : 0.0, #s | ||
'time_duration' : run_specifics['tmax'], #s | ||
'length' : None, #m | ||
'injection_radius' : 0.4, #m | ||
'injection_offset' : np.pi, #rad | ||
'injection_direction' : 0.5, | ||
} | ||
|
||
########################## | ||
# physics parameters | ||
########################## | ||
|
||
N_INERT = 9.64e20 # m^-3 | ||
T_INERT = 300.0 # K | ||
M_INERT = 4.65e-26 # kg | ||
|
||
########################## | ||
# numerics components | ||
########################## | ||
|
||
dn_array = np.array([(2.0* run_specifics['xmax'])/run_specifics['nx'], | ||
(2.0* run_specifics['ymax'])/run_specifics['ny'], | ||
(2.0* run_specifics['zmax'])/run_specifics['nz']]) | ||
|
||
grid = picmi.Cartesian3DGrid( | ||
number_of_cells=[run_specifics['nx'], | ||
run_specifics['ny'], | ||
run_specifics['nz']], | ||
lower_bound=[-run_specifics['xmax'], | ||
-run_specifics['ymax'], | ||
-run_specifics['zmax']], | ||
upper_bound=[run_specifics['xmax'], | ||
run_specifics['ymax'], | ||
run_specifics['zmax']], | ||
bc_xmin='neumann', | ||
bc_xmax='neumann', | ||
bc_ymin='neumann', | ||
bc_ymax='neumann', | ||
bc_zmin='neumann', | ||
bc_zmax='neumann', | ||
lower_boundary_conditions_particles=['absorbing', 'absorbing', 'absorbing'], | ||
upper_boundary_conditions_particles=['absorbing', 'absorbing', 'absorbing'] | ||
) | ||
|
||
solver = picmi.ElectrostaticSolver( | ||
grid=grid, | ||
method='Multigrid', | ||
required_precision=1e-1, | ||
warpx_self_fields_verbosity = 0, | ||
) | ||
|
||
########################## | ||
# define species | ||
########################## | ||
|
||
electrons = picmi.Species( | ||
particle_type='electron', name='electrons', | ||
initial_distribution=None, | ||
warpx_do_not_deposit=not self_consistent_fields, | ||
warpx_self_fields_verbosity=0 | ||
) | ||
|
||
deuterium = picmi.Species( | ||
mass=deuterium_specifics['mass'] * constants.q_e / constants.c ** 2, | ||
charge=deuterium_specifics['charge'], | ||
name='deuterium', | ||
initial_distribution=None, | ||
warpx_do_not_deposit=not self_consistent_fields, | ||
warpx_self_fields_verbosity=0 | ||
) | ||
|
||
deuterium_specifics['nmp'] = beam_specifics['nmp'] | ||
deuterium_specifics['cross_sec_area'] = np.pi * beam_specifics['radius']**2.0 | ||
if deuterium_specifics['ke'] == None: | ||
deuterium_specifics['ke'] = kinematic.Converter(velocity=deuterium_specifics['v_x'], mass=deuterium_specifics['mass'])(silent=True)["kenergy"] | ||
if deuterium_specifics['v_x'] == None: | ||
deuterium_specifics['v_x'] = kinematic.Converter(kenergy=deuterium_specifics['ke'], mass=deuterium_specifics['mass'])(silent=True)['velocity'] | ||
if deuterium_specifics['time_duration'] == None: | ||
deuterium_specifics['time_duration'] = deuterium_specifics['length']/deuterium_specifics['v_x'] | ||
if deuterium_specifics['density'] == None: | ||
deuterium_specifics['density'] = deuterium_specifics['current'] / (np.abs(deuterium_specifics['charge']) * deuterium_specifics['cross_sec_area'] * deuterium_specifics['v_x']) | ||
|
||
########################## | ||
# collisions | ||
########################## | ||
|
||
collisions = [] | ||
|
||
# # MCC collisions | ||
# # https://github.com/ECP-WarpX/warpx-data/tree/master/MCC_cross_sections | ||
# cross_sec_direc = '../../../warpx-data/MCC_cross_sections/He/' #Change this to reflect warpx-data location (note, only has He, Ar, and Xe) | ||
|
||
# # https://warpx.readthedocs.io/en/latest/usage/python.html#pywarpx.picmi.MCCCollisions:~:text=pywarpx.picmi.MCCCollisions | ||
# mcc_ions = picmi.MCCCollisions( | ||
# name='coll_ion', | ||
# species=deuterium, | ||
# background_density=N_INERT, | ||
# background_temperature=T_INERT, | ||
# background_mass=M_INERT, | ||
# scattering_processes={ | ||
# 'ionization' : { | ||
# 'cross_section' : cross_sec_direc+'ionization.dat', | ||
# 'species' : deuterium | ||
# }, | ||
# } | ||
# electron_species=electrons | ||
# ) | ||
|
||
# collisions.append(mcc_ions) | ||
|
||
########################## | ||
# simulation setup | ||
########################## | ||
|
||
sim = picmi.Simulation( | ||
solver=solver, | ||
max_steps=int(run_specifics['tmax']/run_specifics['dt']), | ||
verbose=0, | ||
time_step_size=run_specifics['dt'], | ||
warpx_collisions=collisions if collisions else None, | ||
) | ||
|
||
########################## | ||
# diagnostics | ||
########################## | ||
|
||
diagdire = diagnostics['directory'] | ||
|
||
if diagnostics['HDF5_particle_diagnostic']: | ||
species_list = [deuterium] | ||
part_diag = picmi.ParticleDiagnostic(write_dir = f'./diags/{diagdire}', | ||
warpx_file_prefix = 'particle', | ||
period=beam_specifics['diag_period'], | ||
species=species_list, | ||
warpx_openpmd_backend='h5', | ||
warpx_format='openpmd', | ||
data_list=['x', 'y', 'z', 'ux', 'uy', 'uz', 'weighting']) | ||
sim.add_diagnostic(part_diag) | ||
|
||
if diagnostics['HDF5_field_diagnostic']: | ||
field_diag = picmi.FieldDiagnostic(write_dir = f'./diags/{diagdire}', | ||
warpx_file_prefix = 'field', | ||
grid = grid, | ||
period=beam_specifics['diag_period'], | ||
warpx_openpmd_backend='h5', | ||
warpx_format='openpmd', | ||
data_list=['B', 'E', 'J', 'rho']) | ||
sim.add_diagnostic(field_diag) | ||
|
||
########################## | ||
# particle initialization | ||
########################## | ||
|
||
sim.add_species(deuterium, layout=picmi.GriddedLayout(n_macroparticle_per_cell=1)) | ||
sim.add_species(electrons, layout = picmi.GriddedLayout(n_macroparticle_per_cell=1)) | ||
|
||
########################## | ||
# particle injection | ||
########################## | ||
|
||
def rotation(a: list[float, float, float], b: list[float, float, float]) -> np.ndarray: | ||
# Rotate unit vector a to unit vector b | ||
v = np.cross(a, b) | ||
s = np.linalg.norm(v) | ||
c = np.dot(a, b) | ||
v_mat = np.array([[ 0, -v[2], v[1]], | ||
[ v[2], 0, -v[0]], | ||
[-v[1], v[0], 0]]) | ||
R = np.identity(3) + v_mat + np.dot(v_mat, v_mat) * (1 - c) / s**2 | ||
|
||
return R | ||
|
||
def deuterium_injection(sim, position, min_step, max_step, period, size, | ||
weight, species, macroparticles, unit_vector, kinetic_energy): | ||
|
||
if (sim.extension.warpx.getistep(0) < min_step) or ((sim.extension.warpx.getistep(0) > max_step) and (max_step > 0)): | ||
return | ||
if sim.extension.warpx.getistep(0) % period == 0: | ||
|
||
species_kinematic = kinematic.Converter(kenergy=kinetic_energy, mass=species.mass, mass_unit='SI')(silent=True) | ||
w = species_kinematic['velocity'] * sim.time_step_size * period | ||
|
||
theta = np.random.uniform(0.0, 2.0*np.pi, size=[macroparticles*period]) | ||
radius_1 = np.random.uniform(0.0,size[0]/2.0, size=[macroparticles*period]) | ||
radius_2 = np.random.uniform(0.0,size[1]/2.0, size=[macroparticles*period]) | ||
z = np.random.uniform(w/-2.0,w/2.0, size=[macroparticles*period]) | ||
x = radius_1 * np.cos(theta) | ||
y = radius_2 * np.sin(theta) | ||
coordinates = np.vstack((x,y,z)).T.reshape([macroparticles*period, 3, 1]) | ||
coordinates = np.matmul(rotation([0, 0, 1], unit_vector), coordinates).squeeze() | ||
coordinates += position | ||
x, y, z = coordinates.T | ||
|
||
momenta = (species_kinematic['betagamma'] * constants.c) * np.ones_like(coordinates) * unit_vector | ||
ux, uy, uz = momenta.T | ||
|
||
species_wrapper = particle_containers.ParticleContainerWrapper(species.name) | ||
# warpx requires that arrays it receives be contiguous | ||
species_wrapper.add_particles( | ||
x=np.ascontiguousarray(x), y=np.ascontiguousarray(y), z=np.ascontiguousarray(z), | ||
ux=np.ascontiguousarray(ux), uy=np.ascontiguousarray(uy), uz=np.ascontiguousarray(uz), | ||
w=np.ascontiguousarray(np.ones_like(ux))*weight, unique_particles=False | ||
) | ||
|
||
theta_slice = (2.0*np.pi) / deuterium_specifics['n_beams'] | ||
theta = (theta_slice) + deuterium_specifics['injection_offset'] | ||
x_pos = deuterium_specifics['injection_radius']*np.cos(theta) | ||
y_pos = deuterium_specifics['injection_radius']*np.sin(theta) | ||
|
||
if deuterium_specifics['injection_direction'].is_integer(): | ||
normal_vector = [y_pos * deuterium_specifics['injection_direction'], | ||
-x_pos * deuterium_specifics['injection_direction'],0] | ||
else: | ||
normal_vector = [-x_pos * np.sign(deuterium_specifics['injection_direction']), | ||
-y_pos * np.sign(deuterium_specifics['injection_direction']),0] | ||
|
||
min_step = np.ceil(deuterium_specifics['time_start'] / run_specifics['dt']) | ||
|
||
callbacks.installbeforestep( | ||
deuterium_injection( | ||
sim= sim, | ||
position= [x_pos, y_pos, 0.0], | ||
min_step= min_step, | ||
max_step= np.ceil(deuterium_specifics['time_duration'] / run_specifics['dt']) +min_step, | ||
period= beam_specifics['injection_period'], | ||
size= [(2.0*beam_specifics['radius']), (2.0*beam_specifics['radius'])], | ||
weight= (deuterium_specifics['density'] * deuterium_specifics['v_x'] * run_specifics['dt'] * deuterium_specifics['cross_sec_area']) / deuterium_specifics['nmp'], | ||
species= deuterium, | ||
macroparticles= beam_specifics['nmp'], | ||
unit_vector= np.array(normal_vector) / np.sqrt(np.sum(np.array(normal_vector)**2)), | ||
kinetic_energy= deuterium_specifics['ke'] | ||
) | ||
) | ||
|
||
########################## | ||
# simulation run | ||
########################## | ||
|
||
# Write input file that can be used to run with the compiled version | ||
directory = diagnostics['directory'] | ||
sim.write_input_file(file_name=f'inputs_{directory}') | ||
|
||
sim.step() |
Oops, something went wrong.