Skip to content

Commit

Permalink
Reviewed shaders formating to follow raylib coding conventions
Browse files Browse the repository at this point in the history
  • Loading branch information
raysan5 committed Jan 11, 2025
1 parent 49b9050 commit 8e450e4
Show file tree
Hide file tree
Showing 6 changed files with 152 additions and 149 deletions.
57 changes: 28 additions & 29 deletions examples/shaders/resources/shaders/glsl100/pbr.fs
Original file line number Diff line number Diff line change
Expand Up @@ -54,23 +54,22 @@ uniform vec3 viewPos;
uniform vec3 ambientColor;
uniform float ambient;

// refl in range 0 to 1
// returns base reflectivity to 1
// incrase reflectivity when surface view at larger angle
vec3 schlickFresnel(float hDotV,vec3 refl)
// Reflectivity in range 0.0 to 1.0
// NOTE: Reflectivity is increased when surface view at larger angle
vec3 SchlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl)*pow(1.0 - hDotV,5.0);
return refl + (1.0 - refl)*pow(1.0 - hDotV, 5.0);
}

float ggxDistribution(float nDotH, float roughness)
float GgxDistribution(float nDotH,float roughness)
{
float a = roughness*roughness*roughness*roughness;
float d = nDotH*nDotH*(a - 1.0) + 1.0;
d = PI*d*d;
return a/max(d,0.0000001);
return (a/max(d,0.0000001));
}

float geomSmith(float nDotV, float nDotL, float roughness)
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = r*r/8.0;
Expand All @@ -80,7 +79,7 @@ float geomSmith(float nDotV, float nDotL, float roughness)
return ggx1*ggx2;
}

vec3 pbr()
vec3 ComputePBR()
{
vec3 albedo = texture2D(albedoMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
Expand All @@ -104,59 +103,59 @@ vec3 pbr()
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}

vec3 V = normalize(viewPos - fragPosition);
vec3 e = vec3(0);
e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);

vec3 emissive = vec3(0);
emissive = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);

// return N;//vec3(metallic,metallic,metallic);
// If dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 Lo = vec3(0.0); // Acumulate lighting lum
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum

for (int i = 0; i < 4; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in

// Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V), 0.0000001);
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = ggxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = geomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = schlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance

vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);

// Difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;

// Mult kD by the inverse of metallnes , only non-metals should have diffuse light
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
kD *= 1.0 - metallic;
Lo += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
}

vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;

return (ambientFinal + Lo*ao + e);
return (ambientFinal + lightAccum*ao + emissive);
}

void main()
{
vec3 color = pbr();
vec3 color = ComputePBR();

// HDR tonemapping
color = pow(color,color + vec3(1.0));
color = pow(color, color + vec3(1.0));

// Gamma correction
color = pow(color,vec3(1.0/2.2));
color = pow(color, vec3(1.0/2.2));

gl_FragColor = vec4(color,1.0);
}
10 changes: 5 additions & 5 deletions examples/shaders/resources/shaders/glsl100/pbr.vs
Original file line number Diff line number Diff line change
Expand Up @@ -51,16 +51,16 @@ mat3 transpose(mat3 m)

void main()
{
// calc binormal from vertex normal and tangent
// Compute binormal from vertex normal and tangent
vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
// calc fragment normal based on normal transformations

// Compute fragment normal based on normal transformations
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
// calc fragment position based on model transformations

// Compute fragment position based on model transformations
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));

fragTexCoord = vertexTexCoord*2.0;

fragNormal = normalize(normalMatrix*vertexNormal);
vec3 fragTangent = normalize(normalMatrix*vertexTangent);
fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal);
Expand All @@ -70,5 +70,5 @@ void main()
TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal));

// Calculate final vertex position
gl_Position = mvp * vec4(vertexPosition, 1.0);
gl_Position = mvp*vec4(vertexPosition, 1.0);
}
171 changes: 88 additions & 83 deletions examples/shaders/resources/shaders/glsl120/pbr.fs
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@ varying vec3 fragNormal;
varying vec4 shadowPos;
varying mat3 TBN;


// Input uniform values
uniform int numOfLights;
uniform sampler2D albedoMap;
Expand Down Expand Up @@ -53,102 +52,108 @@ uniform vec3 viewPos;
uniform vec3 ambientColor;
uniform float ambient;

// refl in range 0 to 1
// returns base reflectivity to 1
// incrase reflectivity when surface view at larger angle
vec3 schlickFresnel(float hDotV,vec3 refl)
// Reflectivity in range 0.0 to 1.0
// NOTE: Reflectivity is increased when surface view at larger angle
vec3 SchlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl) * pow(1.0 - hDotV,5.0);
return refl + (1.0 - refl)*pow(1.0 - hDotV, 5.0);
}

float ggxDistribution(float nDotH,float roughness)
float GgxDistribution(float nDotH,float roughness)
{
float a = roughness * roughness * roughness * roughness;
float d = nDotH * nDotH * (a - 1.0) + 1.0;
d = PI * d * d;
return a / max(d,0.0000001);
float a = roughness*roughness*roughness*roughness;
float d = nDotH*nDotH*(a - 1.0) + 1.0;
d = PI*d*d;
return (a/max(d,0.0000001));
}

float geomSmith(float nDotV,float nDotL,float roughness)
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = r * r / 8.0;
float ik = 1.0 - k;
float ggx1 = nDotV / (nDotV * ik + k);
float ggx2 = nDotL / (nDotL * ik + k);
return ggx1 * ggx2;
float r = roughness + 1.0;
float k = r*r/8.0;
float ik = 1.0 - k;
float ggx1 = nDotV/(nDotV*ik + k);
float ggx2 = nDotL/(nDotL*ik + k);
return ggx1*ggx2;
}

vec3 pbr(){
vec3 albedo = texture2D(albedoMap,vec2(fragTexCoord.x*tiling.x+offset.x,fragTexCoord.y*tiling.y+offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x,albedoColor.y*albedo.y,albedoColor.z*albedo.z);
float metallic = clamp(metallicValue,0.0,1.0);
float roughness = clamp(roughnessValue,0.0,1.0);
float ao = clamp(aoValue,0.0,1.0);
if(useTexMRA == 1) {
vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x * tiling.x + offset.x, fragTexCoord.y * tiling.y + offset.y));
metallic = clamp(mra.r+metallicValue,0.04,1.0);
roughness = clamp(mra.g+roughnessValue,0.04,1.0);
ao = (mra.b+aoValue)*0.5;
}



vec3 N = normalize(fragNormal);
if(useTexNormal == 1) {
N = texture2D(normalMap, vec2(fragTexCoord.x * tiling.x + offset.y, fragTexCoord.y * tiling.y + offset.y)).rgb;
N = normalize(N * 2.0 - 1.0);
N = normalize(N * TBN);
}

vec3 V = normalize(viewPos - fragPosition);
vec3 ComputePBR()
{
vec3 albedo = texture2D(albedoMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);

float metallic = clamp(metallicValue, 0.0, 1.0);
float roughness = clamp(roughnessValue, 0.0, 1.0);
float ao = clamp(aoValue, 0.0, 1.0);

if (useTexMRA == 1)
{
vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y));
metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
ao = (mra.b + aoValue)*0.5;
}

vec3 N = normalize(fragNormal);
if (useTexNormal == 1)
{
N = texture2D(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb;
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}

vec3 V = normalize(viewPos - fragPosition);

vec3 emissive = vec3(0);
emissive = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);

// return N;//vec3(metallic,metallic,metallic);
// If dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum

for (int i = 0; i < 4; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in

// Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V), 0.0000001);
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance

vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);

vec3 e = vec3(0);
e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * float(useTexEmissive);
// Difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;

//return N;//vec3(metallic,metallic,metallic);
//if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04),albedo.rgb,metallic);
vec3 Lo = vec3(0.0); // acumulate lighting lum

for(int i=0;i<numOfLights;++i){

vec3 L = normalize(lights[i].position - fragPosition); // calc light vector
vec3 H = normalize(V + L); // calc halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // calc distance to light
float attenuation = 1.0 / (dist * dist * 0.23); // calc attenuation
vec3 radiance = lights[i].color.rgb * lights[i].intensity * attenuation; // calc input radiance,light energy comming in

//Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V),0.0000001);
float nDotL = max(dot(N,L),0.0000001);
float hDotV = max(dot(H,V),0.0);
float nDotH = max(dot(N,H),0.0);
float D = ggxDistribution(nDotH,roughness); // larger the more micro-facets aligned to H
float G = geomSmith(nDotV,nDotL,roughness); // smaller the more micro-facets shadow
vec3 F = schlickFresnel(hDotV, baseRefl); // fresnel proportion of specular reflectance

vec3 spec = (D * G * F) / (4.0 * nDotV * nDotL);
// difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
//mult kD by the inverse of metallnes , only non-metals should have diffuse light
kD *= 1.0 - metallic;
Lo += ((kD * albedo.rgb / PI + spec) * radiance * nDotL)*float(lights[i].enabled); // angle of light has impact on result
}
vec3 ambient_final = (ambientColor + albedo)* ambient * 0.5;
return ambient_final+Lo*ao+e;
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
kD *= 1.0 - metallic;
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
}

vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;

return (ambientFinal + lightAccum*ao + emissive);
}

void main()
{
vec3 color = pbr();

//HDR tonemapping
color = pow(color,color + vec3(1.0));
//gamma correction
color = pow(color,vec3(1.0/2.2));
vec3 color = ComputePBR();

gl_FragColor = vec4(color,1.0);

// HDR tonemapping
color = pow(color, color + vec3(1.0));

// Gamma correction
color = pow(color, vec3(1.0/2.2));

gl_FragColor = vec4(color,1.0);
}
Loading

0 comments on commit 8e450e4

Please sign in to comment.