-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
# Fit a regularized Bayesian Linear Regression model to a data set and compare the | ||
# model to Ordinary Least Squares (OLS) and a ridge regression model fit so as to | ||
# minimize Leave-one-out Cross-validation. | ||
# | ||
# 1. Generate the data set. | ||
# | ||
# 2. Fit OLS, Bayesian ridge regression, and ridge regression models. | ||
# | ||
# 3. Compare the prediction errors (measured in error variance) of the different models. | ||
# | ||
# 4. Compare the amount of shrinkage of Bayesian ridge regression and LOOCV ridge regression. | ||
# | ||
# 5. Compare the predicted noise variance and weight variance of OLS and Bayesian ridge | ||
# regression. | ||
|
||
#################################################################################################### | ||
# Part 1: Generate data set | ||
#################################################################################################### | ||
import numpy as np | ||
np.random.seed(0) | ||
|
||
def generate_correlation_matrix(p, param): | ||
res = np.zeros(shape=(p, p)) | ||
for s in range(p): | ||
for t in range(0, s+1): | ||
corr = param | ||
if s == t: | ||
corr = 1.0 | ||
res[s, t] = corr | ||
res[t, s] = corr | ||
return res | ||
|
||
def generate_design_matrix(n, K): | ||
mean = np.zeros(K.shape[0]) | ||
return np.random.multivariate_normal(mean, K, size=n) | ||
|
||
def generate_weights(p): | ||
return np.random.normal(size=p) | ||
|
||
def generate_data_set(n, K, signal_noise_ratio): | ||
p = K.shape[0] | ||
X = generate_design_matrix(n, K) | ||
w = generate_weights(p) | ||
signal_var = np.dot(w, np.dot(K, w)) | ||
w *= np.sqrt(signal_noise_ratio / signal_var) | ||
y = np.dot(X, w) + np.random.normal(size=n) | ||
return X, y, w | ||
|
||
p = 10 | ||
n = 20 | ||
signal_noise_ratio = 1.0 | ||
K = generate_correlation_matrix(p, 0.5) | ||
X, y, w_true = generate_data_set(n, K, signal_noise_ratio) | ||
|
||
|
||
#################################################################################################### | ||
# Part 2: Fit models | ||
#################################################################################################### | ||
# OLS | ||
from sklearn.linear_model import LinearRegression | ||
model_ols = LinearRegression(fit_intercept=False) | ||
model_ols.fit(X, y) | ||
|
||
# Bayesian Linear Regression | ||
from bbai.glm import BayesianRidgeRegression | ||
model_bay = BayesianRidgeRegression(fit_intercept=False) | ||
model_bay.fit(X, y) | ||
|
||
# Ridge Regression (fit to optimize LOOCV error) | ||
from bbai.glm import RidgeRegression | ||
model_rr = RidgeRegression(fit_intercept=False) | ||
model_rr.fit(X, y) | ||
|
||
|
||
#################################################################################################### | ||
# Part 3: Measure and compare the prediction errors for each model | ||
#################################################################################################### | ||
def compute_prediction_error_variance(K, w_true, w): | ||
delta = w - w_true | ||
noise_variance = 1.0 | ||
return noise_variance + np.dot(delta, np.dot(K, delta)) | ||
|
||
err_variance_true = compute_prediction_error_variance(K, w_true, w_true) | ||
err_variance_ols = compute_prediction_error_variance(K, w_true, model_ols.coef_) | ||
err_variance_bay = compute_prediction_error_variance(K, w_true, model_bay.weight_mean_vector_) | ||
err_variance_rr = compute_prediction_error_variance(K, w_true, model_rr.coef_) | ||
|
||
print("===== prediction error variance") | ||
print("err_variance_true =", err_variance_true) | ||
print("err_variance_ols =", err_variance_ols) | ||
print("err_variance_bay =", err_variance_bay) | ||
print("err_variance_rr =", err_variance_rr) | ||
|
||
# Prints: | ||
# err_variance_true = 1.0 | ||
# err_variance_ols = 2.2741141849936 | ||
# err_variance_bay = 1.2253596030087812 | ||
# err_variance_rr = 1.3346410286197081 | ||
|
||
#################################################################################################### | ||
# Part 4: Compare the amount of regularization, measured by shrinkage, between ridge regression | ||
# and the expected weight variance of Bayesian ridge regression | ||
#################################################################################################### | ||
def print_shrinkage_comparison_table(w_ols, w_bay, w_rr): | ||
p = len(w_ols) | ||
print("coef\tbay\t\t\trr") | ||
for j in range(p): | ||
shrink_bay = np.abs(w_bay[j] / w_ols[j]) | ||
shrink_rr = np.abs(w_rr[j] / w_ols[j]) | ||
print(j, "\t", shrink_bay, "\t", shrink_rr) | ||
w_ols_norm = np.linalg.norm(w_ols) | ||
w_bay_norm = np.linalg.norm(w_bay) | ||
w_rr_norm = np.linalg.norm(w_rr) | ||
shrink_bay = w_bay_norm / w_ols_norm | ||
shrink_rr = w_rr_norm / w_ols_norm | ||
print("total\t", shrink_bay, "\t", shrink_rr) | ||
|
||
#################################################################################################### | ||
# Part 5: Compare OLS expected noise and weight variances to the expected noise and weight | ||
# variances from Bayesian ridge regression | ||
#################################################################################################### | ||
err_ols = y - np.dot(X, model_ols.coef_) | ||
s_ols = np.dot(err_ols, err_ols) / (n - p) | ||
print("===== noise variance comparison") | ||
print("noise_variance_ols =", s_ols) | ||
print("noise_variance_bay =", model_bay.noise_variance_mean_) | ||
|
||
# Prints | ||
# noise_variance_ols = 0.4113088518293715 | ||
# noise_variance_bay = 0.646895178795739 | ||
|
||
print("===== weight variance comparison") | ||
w_covariance_ols = s_ols * np.linalg.inv(np.dot(X.T, X)) | ||
print("coef\tOLS\t\t\tbay") | ||
for j in range(p): | ||
print(j, "\t", w_covariance_ols[j, j], "\t", model_bay.weight_covariance_matrix_[j, j]) | ||
|
||
# Prints | ||
# coef OLS bay | ||
# 0 0.08077309122198699 0.07028402634979392 | ||
# 1 0.11934260399465739 0.10372106176189841 | ||
# 2 0.07565674651068977 0.09961127194993058 | ||
# 3 0.05984623288735467 0.07126271235803656 | ||
# 4 0.06790137334901475 0.07153243474011801 | ||
# 5 0.04090207206067381 0.06168627188610626 | ||
# 6 0.06252983263310996 0.06966266955483112 | ||
# 7 0.2007543244631264 0.15580956937954868 | ||
# 8 0.06512850980887401 0.06067162578733245 | ||
# 9 0.03501167166038174 0.03794523021332901 |