-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Ryan Burn
authored and
Ryan Burn
committed
Mar 30, 2024
1 parent
cb85df1
commit 30a3dac
Showing
1 changed file
with
130 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "49fd1559-64b2-41b8-a985-7af99528571f", | ||
"metadata": {}, | ||
"source": [ | ||
"Compute frequentist coverages for the binomial distribution using Jeffreys and Laplace prior with various values of p and n." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "94098bc9-95f3-4ad8-9975-5c43bd77f09e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from scipy.stats import beta\n", | ||
"import math" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "a533ddc1-235c-4088-96b5-886326d70c19", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def coverage_test(n, theta_true, prior_term):\n", | ||
" alpha = 0.95\n", | ||
" low = (1.0 - alpha) / 2.0\n", | ||
" high = 1.0 - low\n", | ||
" res = 0.0\n", | ||
" for y in range(0, n+1):\n", | ||
" dist = beta(y + prior_term, n - y + prior_term)\n", | ||
" t = dist.cdf(theta_true)\n", | ||
" if t > low and t < high:\n", | ||
" res += math.comb(n, y) * theta_true ** y * (1 - theta_true) ** (n - y)\n", | ||
" return res" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "6db34fdb-7a3f-4360-84a3-d79374a39595", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"thetas = [1.0e-4, 1.0e-3, 1.0e-2, 1.0e-1, 0.25, 0.5]\n", | ||
"nx = [5, 10, 20, 100]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "028bbb5b-d214-40aa-bf46-b3671b21622d", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"n theta cov_laplace cov_jeffreys\n", | ||
"5 0.0001 0.0 0.9995000999900006\n", | ||
"5 0.001 0.0 0.995009990004999\n", | ||
"5 0.01 0.9509900498999999 0.9509900498999999\n", | ||
"5 0.1 0.9185400000000001 0.9914400000000001\n", | ||
"5 0.25 0.984375 0.984375\n", | ||
"5 0.5 0.9375 0.9375\n", | ||
"10 0.0001 0.0 0.9990004498800211\n", | ||
"10 0.001 0.0 0.9900448802097482\n", | ||
"10 0.01 0.9043820750088044 0.9043820750088044\n", | ||
"10 0.1 0.9298091736000003 0.9872048016000002\n", | ||
"10 0.25 0.9802722930908203 0.9239587783813477\n", | ||
"10 0.5 0.978515625 0.978515625\n", | ||
"20 0.0001 0.0 0.9980018988604845\n", | ||
"20 0.001 0.0 0.9801888648295347\n", | ||
"20 0.01 0.8179069375972308 0.9831406623643482\n", | ||
"20 0.1 0.9568255047155371 0.9568255047155371\n", | ||
"20 0.25 0.9347622074283208 0.9347622074283208\n", | ||
"20 0.5 0.9586105346679688 0.9586105346679688\n", | ||
"100 0.0001 0.0 0.9900493386913719\n", | ||
"100 0.001 0.9047921471137089 0.9047921471137089\n", | ||
"100 0.01 0.920626797747819 0.9816259635553496\n", | ||
"100 0.1 0.9363983902254425 0.9556901071912257\n", | ||
"100 0.25 0.9512948142448159 0.9512948142448159\n", | ||
"100 0.5 0.9431120663590193 0.9431120663590193\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print('n', 'theta', 'cov_laplace', 'cov_jeffreys')\n", | ||
"for n in nx:\n", | ||
" for theta in thetas:\n", | ||
" cov_laplace = coverage_test(n, theta, 1.0)\n", | ||
" cov_jeffreys = coverage_test(n, theta, 0.5)\n", | ||
" print(n, theta, cov_laplace, cov_jeffreys)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "27150810-3dc6-4636-932e-613b886da79d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |