Skip to content

sara-nl/HPML-course-materials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HPML-course-materials

Contains all course materials from the HPML group Course environment: https://jupyter.snellius.surf.nl/jhssrf019

Course Overview

Day 1:

  • Introduction to Deep Learning
  • Using the PyTorch framework
  • Fully connected networks, Convolutional networks, Transformers

Day 2:

  • Software installations on HPC systems
  • Packed file formats for Machine Learning
  • Parallel computing for deep learning
  • Hardware (e.g. Tensor cores) and software features (e.g. low level libraries for deep learning) for accelerated deep learning
  • Profiling PyTorch with TensorBoard

Detailed Course Plan

Day 1

09:00 – 9:20 Welcome and course overview (Lars Veefkind)
09:20 – 10:00 Introduction to ML & DL basic principles (Lars Veefkind)
10:00 – 10:30 Introduction to PyTorch (notebook) (Lars Veefkind)
10:30 – 10:45 Coffee break
10:45 – 11:30 Hands-on: Fully connected network (Lars Veefkind)
11:30 – 11:45 Recap Hands-on
11:45 – 12:45 Lunch Break
12:45 – 13:45 Convolutional neural networks (Lars Veefkind)
13:45 – 14:30 Hands-on: Convolutional neural networks (Lars Veefkind)
14:30 – 14:45 Recap hands-on
14:45 – 15:00 Coffee Break
15:00 – 15:45 LLMs / Transformers (Simone van Bruggen)
15:45 – 16:30 Hands-on/demo notebook: Transformers
16:30 – 17:00 Questions, wrap up

Day 2:

9:00 - 10:15 Parallel Computing for Deep Learning (Lars Veefkind)
10:15 – 10:30 Coffee break
10:30 – 11:00 Packed file formats (Monica Rotulo)
11:00 – 11:45 Hands-on: Packed file formats (Monica Rotulo)
11:45 – 12:45 Lunch Break
12:45 – 14:15 Software installations on HPC systems (Robert Jan Schlimbach/Monica Rotulo)
14:15 – 14:30 Coffee Break
14:30 – 15:15 Hardware and software features to accelerate deep learning (Monica Rotulo)
15:15 – 16:15 Profiling to understand your neural network’s performance (Robert Jan Schlimbach/Lars Veefkind)
16:15 – 17:00 Questions, wrap up

About

Contains all course materials from the HPML group

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages