This repository has been archived by the owner on Oct 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
load a services.Dataset into a Neo4J instance
- Loading branch information
1 parent
2be9056
commit 6956289
Showing
6 changed files
with
190 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
start-neo4j: | ||
docker compose -f docker-compose.neo4j.yml --env-file .env up -d | ||
|
||
stop-neo4j: | ||
docker compose -f docker-compose.neo4j.yml down | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
import logging | ||
from typing import Any, Dict, List, Tuple | ||
|
||
from . import services | ||
|
||
import neo4j | ||
from owlready2 import get_ontology | ||
|
||
logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO) | ||
|
||
|
||
def load_services_dataset(driver: neo4j.Driver, dataset: services.Dataset, dataset_path: str, import_chunk_size: int=1000): | ||
""" | ||
Load a given dataset into a Neo4J instance | ||
""" | ||
ontology = get_ontology(dataset.url).load() | ||
ontology.save(file=str(dataset_path), format="rdfxml") | ||
concept_schemes_raw, concepts_raw, _, semantic_relations_raw = services.GlossaryController.parse_dataset(dataset_path) | ||
|
||
logging.info("Loaded the dataset in memory") | ||
|
||
concept_schemes = [c.to_dict() for c in concept_schemes_raw] | ||
concepts = [c.to_dict() for c in concepts_raw] | ||
semantic_relations = [c.to_dict() for c in semantic_relations_raw] | ||
|
||
# One service.Dataset has exactly one concept scheme | ||
main_concept_scheme = concept_schemes[0] | ||
|
||
logging.info("Importing concept schemes...") | ||
|
||
# Load concept schemes | ||
# for chunk in chunk_list(concept_schemes, import_chunk_size): | ||
# query, args = build_nodes_import_query_and_args(["ConceptScheme"], chunk) | ||
# driver.execute_query(query, args) | ||
|
||
logging.info("Imported concept schemes") | ||
|
||
logging.info("Importing concepts...") | ||
|
||
# Load concepts | ||
# for chunk in chunk_list(concepts, import_chunk_size): | ||
# query, args = build_nodes_import_query_and_args(["Concept"], chunk) | ||
# driver.execute_query(query, args) | ||
|
||
logging.info("Imported concept schemes") | ||
|
||
logging.info("Adding indices...") | ||
|
||
# Index by the IRI | ||
for key, label in [("ConceptScheme", "iri"), ("Concept", "iri")]: | ||
driver.execute_query(build_index_query(key=key, label=label)) | ||
|
||
logging.info("Added indices...") | ||
|
||
logging.info("Importing concept -> concept scheme relationships...") | ||
|
||
# Load concept -> concept scheme relationships | ||
for concept in concepts: | ||
edge_type = "IsFrom" | ||
edge = ("Concept", concept["iri"], "ConceptScheme", main_concept_scheme["iri"]) | ||
query, args = build_edges_import_query_and_args([edge_type], [edge]) | ||
driver.execute_query(query, args) | ||
|
||
logging.info("Imported concept -> concept scheme relationships") | ||
|
||
logging.info("Importing concept -> concept 'broader' relationships...") | ||
|
||
# Load concept "broader" their relationships | ||
for semantic_relation in semantic_relations: | ||
edge_type = semantic_relations[0]["type"] | ||
|
||
edge = ("Concept", semantic_relation["source_concept_iri"], "Concept", semantic_relation["target_concept_iri"]) | ||
|
||
query, args = build_edges_import_query_and_args([edge_type], [edge]) | ||
driver.execute_query(query, args) | ||
|
||
logging.info("Imported concept -> concept 'broader' relationships") | ||
|
||
|
||
def build_nodes_import_query_and_args(labels: List[str], nodes: List[Dict[str, Any]]): | ||
""" | ||
Bulk import nodes into Neo4J | ||
## Example | ||
> build_nodes_import_query_and_args(["Hello", "World"], [{"a": 1, "b": 2}, {"a": 1, "c": 10}]) | ||
( | ||
"MERGE (e_0:Hello:World) {a: $a_0, b: $b_0}\nMERGE (e_1:Hello:World) {a: $a_1, c: $c_1}", | ||
{'a_0': 1, 'b_0': 2, 'a_1': 1, 'c_1': 10} | ||
) | ||
""" | ||
query_args = {} | ||
for idx, node in enumerate(nodes): | ||
for k, v in node.items(): | ||
query_args[f"{k}_{idx}"] = v | ||
|
||
schema_keys = set() | ||
for node in nodes: | ||
for k in node.keys(): | ||
schema_keys.add(k) | ||
|
||
node_labels_str = ':'.join(labels) | ||
|
||
query_rows = [] | ||
for idx, node in enumerate(nodes): | ||
schema_kv = [f"{k}: ${k}_{idx}" for k in node.keys()] | ||
query_row = f"MERGE (e_{idx}:{node_labels_str} {{{', '.join(schema_kv)}}})" | ||
query_rows.append(query_row) | ||
|
||
query = "\n".join(query_rows) | ||
return query, query_args | ||
|
||
|
||
def build_edges_import_query_and_args(labels: List[str], edges: List[Tuple[str, str, str, str]]): | ||
""" | ||
Bulk import nodes into Neo4J | ||
## Example | ||
> build_edges_import_query_and_args(["IsFrom"], [("Concept", "def", "ConceptScheme", "abcd")]) | ||
( | ||
"MATCH (src_0:Concept {iri: $iri_src_0}), (tgt_0: ConceptScheme {iri: $iri_tgt_0})\nWITH src_0, tgt_0\nMERGE (src_0)-[r_0:IsFrom]->(tgt_0)", | ||
{'iri_src_0': 'def', 'iri_tgt_0': 'abcd'} | ||
) | ||
""" | ||
query_args = {} | ||
for idx, edge in enumerate(edges): | ||
_, source_iri, _, target_iri = edge | ||
query_args[f"iri_src_{idx}"] = source_iri | ||
query_args[f"iri_tgt_{idx}"] = target_iri | ||
|
||
edge_labels_str = ":".join(labels) | ||
|
||
matches = [] | ||
withs = [] | ||
merges = [] | ||
for idx, edge in enumerate(edges): | ||
source_label, source_iri, target_label, target_iri = edge | ||
matches.extend([ | ||
f"(src_{idx}:{source_label} {{iri: $iri_src_{idx}}})", | ||
f"(tgt_{idx}:{target_label} {{iri: $iri_tgt_{idx}}})" | ||
]) | ||
withs.extend([f"src_{idx}", f"tgt_{idx}"]) | ||
merges.extend([f"(src_{idx})-[r_{idx}:{edge_labels_str}]->(tgt_{idx})"]) | ||
|
||
query = f""" | ||
MATCH {', '.join(matches)} | ||
""" | ||
for merge in merges: | ||
query += f"MERGE {merge}" | ||
|
||
return query, query_args | ||
|
||
|
||
def build_index_query(label: str, key: str): | ||
""" | ||
Build indices for a list of keys on labels | ||
""" | ||
return f"CREATE INDEX {label}_{key}_index IF NOT EXISTS FOR (c:{label}) ON (c.{key})" | ||
|
||
|
||
def chunk_list(lst: list, n: int): | ||
""" | ||
Yield successive n-sized chunks from list `lst`. | ||
""" | ||
for i in range(0, len(lst), n): | ||
yield lst[i:i + n] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
services: | ||
neo4j: | ||
image: "neo4j:5.20.0-community-bullseye" | ||
volumes: | ||
- neo4j_data:/data | ||
- neo4j_logs:/logs | ||
ports: | ||
- 7474:7474 | ||
- 7687:7687 | ||
environment: | ||
- NEO4J_AUTH=${NEO4J_AUTH} | ||
volumes: | ||
neo4j_data: | ||
neo4j_logs: |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters