forked from luyishisi/Anti-Anti-Spider
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
67 changed files
with
253 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
|
||
本目录记录关于验证码识别的探索和代码 | ||
|
||
主要项目: | ||
|
||
1:基于TensorFlow进行验证码的自动生成和训练识别 | ||
成功率破 95%以上 | ||
台式i5机 训练耗时 2天 | ||
目录 tensorrflow_cnn | ||
|
||
2:亚马逊验证码破解 | ||
目录AmazonCaptcha | ||
成功率 70% | ||
|
||
3:图片相似性比较识别-knn算法 | ||
knn_num_captcha | ||
识别率:低。 | ||
|
||
4:使用python包--pytesseract | ||
目录 pytesseract | ||
识别率:低 |
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Diff not rendered.
Binary file not shown.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
#coding:utf-8 | ||
from gen_captcha import gen_captcha_text_and_image | ||
from gen_captcha import number | ||
from gen_captcha import alphabet | ||
from gen_captcha import ALPHABET | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
text, image = gen_captcha_text_and_image() | ||
print("验证码图像channel:", image.shape) # (60, 160, 3) | ||
# 图像大小 | ||
IMAGE_HEIGHT = 60 | ||
IMAGE_WIDTH = 160 | ||
MAX_CAPTCHA = len(text) | ||
print("验证码文本最长字符数", MAX_CAPTCHA) # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐 | ||
|
||
# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用) | ||
def convert2gray(img): | ||
if len(img.shape) > 2: | ||
gray = np.mean(img, -1) | ||
# 上面的转法较快,正规转法如下 | ||
# r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] | ||
# gray = 0.2989 * r + 0.5870 * g + 0.1140 * b | ||
return gray | ||
else: | ||
return img | ||
|
||
""" | ||
cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。 | ||
np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行 | ||
""" | ||
|
||
# 文本转向量 | ||
char_set = number + alphabet + ALPHABET + ['_'] # 如果验证码长度小于4, '_'用来补齐 | ||
CHAR_SET_LEN = len(char_set) | ||
def text2vec(text): | ||
text_len = len(text) | ||
if text_len > MAX_CAPTCHA: | ||
raise ValueError('验证码最长4个字符') | ||
|
||
vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN) #生成一个默认为0的向量 | ||
def char2pos(c): | ||
if c =='_': | ||
k = 62 | ||
return k | ||
k = ord(c)-48 | ||
if k > 9: | ||
k = ord(c) - 55 | ||
if k > 35: | ||
k = ord(c) - 61 | ||
if k > 61: | ||
raise ValueError('No Map') | ||
return k | ||
for i, c in enumerate(text): | ||
idx = i * CHAR_SET_LEN + char2pos(c) | ||
vector[idx] = 1 | ||
return vector | ||
# 向量转回文本 | ||
def vec2text(vec): | ||
char_pos = vec.nonzero()[0] | ||
text=[] | ||
for i, c in enumerate(char_pos): | ||
char_at_pos = i #c/63 | ||
char_idx = c % CHAR_SET_LEN | ||
if char_idx < 10: | ||
char_code = char_idx + ord('0') | ||
elif char_idx <36: | ||
char_code = char_idx - 10 + ord('A') | ||
elif char_idx < 62: | ||
char_code = char_idx- 36 + ord('a') | ||
elif char_idx == 62: | ||
char_code = ord('_') | ||
else: | ||
raise ValueError('error') | ||
text.append(chr(char_code)) | ||
return "".join(text) | ||
|
||
""" | ||
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有 | ||
vec = text2vec("F5Sd") | ||
text = vec2text(vec) | ||
print(text) # F5Sd | ||
vec = text2vec("SFd5") | ||
text = vec2text(vec) | ||
print(text) # SFd5 | ||
""" | ||
|
||
# 生成一个训练batchv 一个批次为 默认128 张图片 转换为向量 | ||
def get_next_batch(batch_size=128): | ||
batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH]) | ||
batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN]) | ||
|
||
# 有时生成图像大小不是(60, 160, 3) 反复获取验证码直到该验证码符合标准格式。 | ||
def wrap_gen_captcha_text_and_image(): | ||
while True: | ||
text, image = gen_captcha_text_and_image() | ||
if image.shape == (60, 160, 3): | ||
return text, image | ||
|
||
for i in range(batch_size): | ||
#获取图片,并灰度转换 | ||
text, image = wrap_gen_captcha_text_and_image() | ||
image = convert2gray(image) | ||
|
||
# flatten 图片一维化 以及对应的文字内容也一维化,形成一个128行每行一个图片及对应文本 | ||
batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0 | ||
batch_y[i,:] = text2vec(text) | ||
|
||
return batch_x, batch_y | ||
|
||
#################################################################### | ||
|
||
# 申请三个占位符 | ||
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH]) | ||
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN]) | ||
keep_prob = tf.placeholder(tf.float32) # dropout | ||
|
||
# 定义CNN | ||
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1): | ||
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) | ||
|
||
#w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) # | ||
#w_c2_alpha = np.sqrt(2.0/(3*3*32)) | ||
#w_c3_alpha = np.sqrt(2.0/(3*3*64)) | ||
#w_d1_alpha = np.sqrt(2.0/(8*32*64)) | ||
#out_alpha = np.sqrt(2.0/1024) | ||
|
||
# 3 conv layer # 3 个 转换层 | ||
w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32])) | ||
b_c1 = tf.Variable(b_alpha*tf.random_normal([32])) | ||
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) | ||
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | ||
conv1 = tf.nn.dropout(conv1, keep_prob) | ||
|
||
w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64])) | ||
b_c2 = tf.Variable(b_alpha*tf.random_normal([64])) | ||
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)) | ||
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | ||
conv2 = tf.nn.dropout(conv2, keep_prob) | ||
|
||
w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64])) | ||
b_c3 = tf.Variable(b_alpha*tf.random_normal([64])) | ||
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)) | ||
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | ||
conv3 = tf.nn.dropout(conv3, keep_prob) | ||
|
||
# Fully connected layer # 最后连接层 | ||
w_d = tf.Variable(w_alpha*tf.random_normal([8*20*64, 1024])) | ||
b_d = tf.Variable(b_alpha*tf.random_normal([1024])) | ||
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]]) | ||
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d)) | ||
dense = tf.nn.dropout(dense, keep_prob) | ||
|
||
# 输出层 | ||
w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN])) | ||
b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN])) | ||
out = tf.add(tf.matmul(dense, w_out), b_out) | ||
#out = tf.nn.softmax(out) | ||
return out | ||
|
||
# 训练 | ||
def train_crack_captcha_cnn(): | ||
output = crack_captcha_cnn() | ||
# loss 损失数值 | ||
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y)) | ||
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) | ||
# 最后一层用来分类的softmax和sigmoid有什么不同? | ||
# optimizer 为了加快训练 learning_rate 应该开始大,然后慢慢衰 | ||
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) | ||
|
||
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) | ||
max_idx_p = tf.argmax(predict, 2) | ||
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) | ||
correct_pred = tf.equal(max_idx_p, max_idx_l) | ||
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) | ||
|
||
saver = tf.train.Saver() | ||
with tf.Session() as sess: | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
step = 0 | ||
while True: | ||
batch_x, batch_y = get_next_batch(64) | ||
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) | ||
print(step, loss_) | ||
|
||
# 每100 step计算一次准确率 | ||
if step % 100 == 0: | ||
batch_x_test, batch_y_test = get_next_batch(100) | ||
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) | ||
print(step, acc) | ||
# 如果准确率大于50%,保存模型,完成训练 | ||
if acc > 0.5: | ||
saver.save(sess, "crack_capcha.model", global_step=step) | ||
break | ||
step += 1 | ||
|
||
def crack_captcha(captcha_image): | ||
output = crack_captcha_cnn() | ||
|
||
saver = tf.train.Saver() | ||
with tf.Session() as sess: | ||
saver.restore(sess, tf.train.latest_checkpoint('.')) | ||
|
||
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) | ||
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1}) | ||
|
||
text = text_list[0].tolist() | ||
vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN) | ||
i = 0 | ||
for n in text: | ||
vector[i*CHAR_SET_LEN + n] = 1 | ||
i += 1 | ||
return vec2text(vector) | ||
|
||
if __name__ == '__main__': | ||
|
||
text, image = gen_captcha_text_and_image() | ||
image = convert2gray(image) #生成一张新图 | ||
image = image.flatten() / 255 # 将图片一维化 | ||
predict_text = crack_captcha(image) #导入模型识别 | ||
print("正确: {} 预测: {}".format(text, predict_text)) | ||
#train_crack_captcha_cnn() |
File renamed without changes.