Skip to content

Commit

Permalink
Merge pull request #11 from sor16/add-doi-links
Browse files Browse the repository at this point in the history
DOI links added to references
  • Loading branch information
RafaelVias authored Aug 11, 2024
2 parents 7bcbda9 + 6d0fbf0 commit 064d754
Show file tree
Hide file tree
Showing 186 changed files with 24,502 additions and 14,818 deletions.
3 changes: 2 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ Description: Fits a discharge rating curve based on the power-law and the genera
Depends: R (>= 3.5.0)
License: MIT + file LICENSE
LazyData: true
RoxygenNote: 7.2.1
RoxygenNote: 7.3.2
Imports:
ggplot2,
grid,
Expand All @@ -25,5 +25,6 @@ Suggests:
covr,
vdiffr
VignetteBuilder: knitr
URL: https://sor16.github.io/bdrc
BugReports: https://github.com/sor16/bdrc/issues
Encoding: UTF-8
4 changes: 2 additions & 2 deletions R/extract_draws.R
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
#'\code{iter}
#'\code{param}
#'\code{value}
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#'@references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#'@seealso \code{\link{plm0}}, \code{\link{plm}}, \code{\link{gplm0}}, \code{\link{gplm}} for further information on parameters
#'@examples
#'\donttest{
Expand Down Expand Up @@ -54,7 +54,7 @@ spread_draws <- function(mod,...,transformed=FALSE){
#'\code{iter}
#'\code{param}
#'\code{value}
#' @references B. Hrafnkelsson, H. Sigurdarson, S.M. Gardarsson, 2020, Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling. arXiv preprint 2010.04769
#'@references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#'@seealso \code{\link{plm0}}, \code{\link{plm}}, \code{\link{gplm0}}, \code{\link{gplm}} for further information on parameters
#'@examples
#'\donttest{
Expand Down
6 changes: 3 additions & 3 deletions R/gplm.R
Original file line number Diff line number Diff line change
Expand Up @@ -54,9 +54,9 @@
#' \item{\code{formula}}{object of type "formula" provided by the user.}
#' \item{\code{data}}{data provided by the user, ordered by stage.}
#' \item{\code{run_info}}{information about the input arguments and the specific parameters used in the MCMC chain.}
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639.
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis. doi: https://doi.org/10.1201/b16018
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639. doi: https://doi.org/10.1111/1467-9868.00353
#' @references Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594.
#' @seealso \code{\link{summary.gplm}} for summaries, \code{\link{predict.gplm}} for prediction and \code{\link{plot.gplm}} for plots. \code{\link{spread_draws}} and \code{\link{gather_draws}} are also useful to aid further visualization of the full posterior distributions.
#'
Expand Down
6 changes: 3 additions & 3 deletions R/gplm0.R
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,9 @@
#' \item{\code{formula}}{object of type "formula" provided by the user.}
#' \item{\code{data}}{data provided by the user, ordered by stage.}
#' \item{\code{run_info}}{information about the input arguments and the specific parameters used in the MCMC chain.}
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639.
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis. doi: https://doi.org/10.1201/b16018
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639. doi: https://doi.org/10.1111/1467-9868.00353
#' @references Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594.
#' @seealso \code{\link{summary.gplm0}} for summaries, \code{\link{predict.gplm0}} for prediction. It is also useful to look at \code{\link{spread_draws}} and \code{\link{plot.gplm0}} to help visualize the full posterior distributions.
#' @examples
Expand Down
6 changes: 3 additions & 3 deletions R/plm.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,9 +46,9 @@
#' \item{\code{formula}}{object of type "formula" provided by the user.}
#' \item{\code{data}}{data provided by the user, ordered by stage.}
#' \item{\code{run_info}}{information about the input arguments and the specific parameters used in the MCMC chain.}
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639.
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis. doi: https://doi.org/10.1201/b16018
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639. doi: https://doi.org/10.1111/1467-9868.00353
#' @references Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594.
#' @seealso \code{\link{summary.plm}} for summaries, \code{\link{predict.plm}} for prediction. It is also useful to look at \code{\link{spread_draws}} and \code{\link{plot.plm}} to help visualize the full posterior distributions.
#' @examples
Expand Down
6 changes: 3 additions & 3 deletions R/plm0.R
Original file line number Diff line number Diff line change
Expand Up @@ -39,9 +39,9 @@
#' \item{\code{formula}}{object of type "formula" provided by the user.}
#' \item{\code{data}}{data provided by the user, ordered by stage.}
#' \item{\code{run_info}}{information about the input arguments and the specific parameters used in the MCMC chain.}
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639.
#' @references Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis. doi: https://doi.org/10.1201/b16018
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639. doi: https://doi.org/10.1111/1467-9868.00353
#' @references Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594.
#' @seealso \code{\link{summary.plm0}} for summaries, \code{\link{predict.plm0}} for prediction. It is also useful to look at \code{\link{spread_draws}} and \code{\link{plot.plm0}} to help visualize the full posterior distributions.
#' @examples
Expand Down
8 changes: 4 additions & 4 deletions R/tournament.R
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
#' @param winning_criteria a numerical value which sets the threshold which the first model in the list must exceed for it to be declared the more appropriate model. This value defaults to 2 for methods "WAIC" and "DIC", but defaults to 0.75 for method "Posterior_probability".
#' @return
#' A data.frame with the summary of the results of the game
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#'
#' @seealso \code{\link{tournament}}
#' @keywords internal
Expand Down Expand Up @@ -62,10 +62,10 @@ evaluate_game <- function(m,method,winning_criteria){
#' \item{\code{info}}{specifics about the tournament; the overall winner; the method used; and the winning criteria.}
#' }
#'
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711.
#' @references Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711
#' @references Jeffreys, H. (1961). Theory of Probability, Third Edition. Oxford University Press.
#' @references Kass, R., and A. Raftery, A. (1995). Bayes Factors. Journal of the American Statistical Association, 90, 773-795.
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639.
#' @references Kass, R., and A. Raftery, A. (1995). Bayes Factors. Journal of the American Statistical Association, 90, 773-795. doi: https://doi.org/10.1080/01621459.1995.10476572
#' @references Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639. doi: https://doi.org/10.1111/1467-9868.00353
#' @references Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594.
#'
#' @seealso \code{\link{plm0}} \code{\link{plm}}, \code{\link{gplm0}},\code{\link{gplm}} \code{\link{summary.tournament}} and \code{\link{plot.tournament}}
Expand Down
4 changes: 2 additions & 2 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ devtools::install_github("sor16/bdrc")
```

## Getting started
It is very simple to fit a discharge rating curve with the _bdrc_ package. All you need are two mandatory input arguments, formula and data. The formula is of the form y~x where y is discharge in m$^3/$s and x is water elevation in m (it is very important that the data is in the correct units). data is a data.frame which must include x and y as column names. As an example, we will use data from the Swedish gauging station _Krokfors_, which is one of the datasets that come with the package. In this table, the Q column denotes discharge while W denotes water elevation:
It is very simple to fit a discharge rating curve with the _bdrc_ package. All you need are two mandatory input arguments, formula and data. The formula is of the form y~x where y is discharge in m^3/s and x is water elevation in m (it is very important that the data is in the correct units). data is a data.frame which must include x and y as column names. As an example, we will use data from the Swedish gauging station _Krokfors_, which is one of the datasets that come with the package. In this table, the Q column denotes discharge while W denotes water elevation:

```{r,eval=F}
gplm.fit <- gplm(Q~W,krokfors)
Expand All @@ -48,5 +48,5 @@ gplm.fit <- gplm(Q~W,krokfors)
To dig deeper into the functionality of the package and the different ways to visualize a discharge rating curve model for your data, we recommend taking a look at our two vignettes.

## References
Hrafnkelsson, B., Sigurdarson, H., and Gardarsson, S. M. (2022). *Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling*, Environmetrics, 33(2):e2711.
Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022). *Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling*, Environmetrics, 33(2):e2711. doi: https://doi.org/10.1002/env.2711

15 changes: 8 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,10 +45,9 @@ devtools::install_github("sor16/bdrc")

It is very simple to fit a discharge rating curve with the *bdrc*
package. All you need are two mandatory input arguments, formula and
data. The formula is of the form y\~x where y is discharge in
m![^3/](https://latex.codecogs.com/png.image?%5Cdpi%7B110%7D&space;%5Cbg_white&space;%5E3%2F "^3/")s
and x is water elevation in m (it is very important that the data is in
the correct units). data is a data.frame which must include x and y as
data. The formula is of the form y~x where y is discharge in m^3/s and x
is water elevation in m (it is very important that the data is in the
correct units). data is a data.frame which must include x and y as
column names. As an example, we will use data from the Swedish gauging
station *Krokfors*, which is one of the datasets that come with the
package. In this table, the Q column denotes discharge while W denotes
Expand All @@ -64,6 +63,8 @@ recommend taking a look at our two vignettes.

## References

Hrafnkelsson, B., Sigurdarson, H., and Gardarsson, S. M. (2022).
*Generalization of the power-law rating curve using hydrodynamic theory
and Bayesian hierarchical modeling*, Environmetrics, 33(2):e2711.
Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö.,
Vias, R. D., and Gardarsson, S. M. (2022). *Generalization of the
power-law rating curve using hydrodynamic theory and Bayesian
hierarchical modeling*, Environmetrics, 33(2):e2711. doi:
<https://doi.org/10.1002/env.2711>
Loading

0 comments on commit 064d754

Please sign in to comment.