Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updates to Segmentation catalog to increase source detection #1630

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 39 additions & 28 deletions drizzlepac/haputils/catalog_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1516,8 +1516,9 @@ def __init__(self, image, param_dict, param_dict_qc, diagnostic_mode, tp_sources
self._nsigma = self.param_dict["sourcex"]["segm_nsigma"]
self._rw2d_size = self.param_dict["sourcex"]["rw2d_size"]
self._rw2d_nsigma = self.param_dict["sourcex"]["rw2d_nsigma"]
self._rw2d_biggest_source = self.param_dict["sourcex"]["rw2d_biggest_source"]
self._rw2d_source_fraction = self.param_dict["sourcex"]["rw2d_source_fraction"]
self._biggest_source_limit = self.param_dict["sourcex"]["biggest_source_limit"]
self._biggest_fraction_limit = self.param_dict["sourcex"]["biggest_fraction_limit"]
self._rw_biggest_source_limit = self.param_dict["sourcex"]["rw_biggest_source_limit"]
self._bs_deblend_limit = self.param_dict["sourcex"]["biggest_source_deblend_limit"]
self._sf_deblend_limit = self.param_dict["sourcex"]["source_fraction_deblend_limit"]
self._ratio_bigsource_limit = self.param_dict["sourcex"]["ratio_bigsource_limit"]
Expand Down Expand Up @@ -1584,10 +1585,13 @@ def identify_sources(self, **pars):
log.info("contrast (frac. flux for peak to be separate object, 0=max. deblend, 1=no deblend): {}".format(self._contrast))
log.info("RickerWavelet nsigma (threshold = nsigma * background_rms): {}".format(self._rw2d_nsigma))
log.info("RickerWavelet kernel X- and Y-dimension: {}".format(self._rw2d_size))
log.info("Percentage limit on biggest source (criterion for RickerWavelet kernel): {}".format(100.0 * self._rw2d_biggest_source))
log.info("Percentage limit on source fraction over the image (criterion for RickerWavelet kernel): {}".format(100.0 * self._rw2d_source_fraction))
log.info("Percentage limit on biggest source deblending limit: {}".format(100.0 * self._bs_deblend_limit))
log.info("Percentage limit on source fraction deblending limit: {}".format(100.0 * self._sf_deblend_limit))
log.info("Maximum % limit on acceptable biggest source: {}".format(100.0 * self._biggest_source_limit))
log.info("Maximum % limit on acceptable source fraction over the image: {}".format(100.0 * self._biggest_fraction_limit))
log.info("Maximum % limit on acceptable RickerWavelet biggest source: {}".format(100.0 * self._rw_biggest_source_limit))
log.info("Minimum acceptable Gaussian vs RickerWavelet kernel big source ratio limit (overlapping PSFs): {}".format(self._ratio_bigsource_limit))
log.info("Maximum % limit on acceptable biggest source (RW deblend retry): {}".format(100.0 * self._bs_deblend_limit))
log.info("Maximum % limit on acceptable source fraction (RW deblend retry): {}".format(100.0 * self._sf_deblend_limit))
log.info("Ignore prohibitively big sources identified by mimimum ratio of the areas (biggest/biggest-1): {}".format(self._ratio_bigsource_deblend_limit))
log.info("Scaling parameter of the Kron radius: {}".format(self._kron_scaling_radius))
log.info("Kron minimum circular radius: {}".format(self._kron_minimum_radius))
log.info("")
Expand Down Expand Up @@ -1617,6 +1621,7 @@ def identify_sources(self, **pars):
# Round 1
ncount = 0
log.info("")
log.info("ROUND 1")
log.info("Using Custom kernel or Gaussian to generate a segmentation map.")
g_segm_img, g_is_big_crowded, g_bs, g_sf = self.detect_and_eval_segments(imgarr,
g2d_kernel,
Expand All @@ -1626,8 +1631,8 @@ def identify_sources(self, **pars):
self.image.bkg_background_ra,
self.image.bkg_rms_ra,
check_big_island_only=False,
rw2d_biggest_source=self._rw2d_biggest_source,
rw2d_source_fraction=self._rw2d_source_fraction)
biggest_source=self._biggest_source_limit,
source_fraction=self._biggest_fraction_limit)
segm_img_orig = copy.deepcopy(g_segm_img)

# If the science field via the segmentation map is deemed crowded or has big sources/islands, compute the
Expand Down Expand Up @@ -1658,14 +1663,8 @@ def identify_sources(self, **pars):
self.image.bkg_background_ra,
self.image.bkg_rms_ra,
check_big_island_only=True,
rw2d_biggest_source=self._rw2d_biggest_source,
rw2d_source_fraction=self._rw2d_source_fraction)

# Compute the ratio of big sources/islands using Custom/Gaussian kernel vs Rickerwavelet kernel
# This value can be used as a discriminant between overlapping point sources and nebulousity fields
ratio_cg2rw_bigsource = 3.0
if rw_bs > 0.0:
ratio_cg2rw_bigsource = g_bs / rw_bs
biggest_source=self._rw_biggest_source_limit,
source_fraction=self._biggest_fraction_limit)

# Check if the RickerWavelet segmentation image still seems to be problematic
if rw_is_big_crowded and rw_segm_img:
Expand Down Expand Up @@ -1731,6 +1730,7 @@ def identify_sources(self, **pars):
# Round 2
ncount += 1
log.info("")
log.info("ROUND 2")
log.info("With alternate background...using Custom/Gaussian kernel to generate a segmentation map.")
del g_segm_img
g_segm_img, g_is_big_crowded, g_bs, g_sf = self.detect_and_eval_segments(imgarr,
Expand All @@ -1741,8 +1741,8 @@ def identify_sources(self, **pars):
self.image.bkg_background_ra,
self.image.bkg_rms_ra,
check_big_island_only=False,
rw2d_biggest_source=self._rw2d_biggest_source,
rw2d_source_fraction=self._rw2d_source_fraction)
biggest_source=self._biggest_source_limit,
source_fraction=self._biggest_fraction_limit)

# Check again for big sources/islands or a large source fraction
if g_is_big_crowded:
Expand All @@ -1763,8 +1763,14 @@ def identify_sources(self, **pars):
self.image.bkg_background_ra,
self.image.bkg_rms_ra,
check_big_island_only=False,
rw2d_biggest_source=self._bs_deblend_limit,
rw2d_source_fraction=self._sf_deblend_limit)
biggest_source=self._bs_deblend_limit,
source_fraction=self._sf_deblend_limit)

# Compute the ratio of big sources/islands using Custom/Gaussian kernel vs Rickerwavelet kernel
# This value can be used as a discriminant between overlapping point sources and nebulousity fields
ratio_cg2rw_bigsource = 3.0
if rw_bs > 0.0:
ratio_cg2rw_bigsource = g_bs / rw_bs

# Last chance - The larger "deblend" limits were used in this last detection
# attempt based upon the the statistics of processing lots of data - looking
Expand Down Expand Up @@ -1923,7 +1929,7 @@ def identify_sources(self, **pars):

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

def detect_and_eval_segments(self, imgarr, kernel, ncount, size_source_box, nsigma_above_bkg, background_img, background_rms, check_big_island_only=False, rw2d_biggest_source=0.015, rw2d_source_fraction=0.075):
def detect_and_eval_segments(self, imgarr, kernel, ncount, size_source_box, nsigma_above_bkg, background_img, background_rms, check_big_island_only=False, biggest_source=0.015, source_fraction=0.075):

# Compute the threshold to use for source detection
threshold = self.compute_threshold(nsigma_above_bkg, background_img, background_rms)
Expand Down Expand Up @@ -1962,8 +1968,8 @@ def detect_and_eval_segments(self, imgarr, kernel, ncount, size_source_box, nsig
is_big_crowded, big_island, source_fraction = self._evaluate_segmentation_image(segm_img,
imgarr,
big_island_only=check_big_island_only,
max_biggest_source=rw2d_biggest_source,
max_source_fraction=rw2d_source_fraction)
max_biggest_source=biggest_source,
max_source_fraction=source_fraction)

return segm_img, is_big_crowded, big_island, source_fraction

Expand Down Expand Up @@ -2053,10 +2059,12 @@ def detect_segments(self, imgarr, threshold, ncount, filter_kernel=None, source_
img_bkg_sub = np.clip(img_bkg_sub, 0, img_bkg_sub.max())
# Now set threshold to 0, since it has already been applied to the input data array
thresh0 = np.zeros_like(img_bkg_sub)
log.info("Setting threshold to zero as data has been background subtracted.")
else:
# Use inputs provided with the kernel
img_bkg_sub = imgarr
thresh0 = threshold
log.info("Using computed threshold which includes [bkg + nsigma * rms].")

# Note: SExtractor has "connectivity=8" which is the default for detect_sources().
segm_img = None
Expand Down Expand Up @@ -2689,8 +2697,7 @@ def _evaluate_segmentation_image(self, segm_img, image_data, big_island_only=Fal
max_biggest_source : float, optional
Maximum limit on the single largest detected "source".

max_source_fraction : float, optional
Maximum limit on the fraction of pixels identified as part of a "source".
max_source_fraction : float, optional Maximum limit on the fraction of pixels identified as part of a "source".

Returns
-------
Expand Down Expand Up @@ -2728,7 +2735,6 @@ def _evaluate_segmentation_image(self, segm_img, image_data, big_island_only=Fal
n, binedges = np.histogram(segm_img.data, range=(1, nbins))
real_pixels = (image_data != 0).sum()
biggest_source = n.max()/float(real_pixels)
log.info("Biggest_source: %f", biggest_source)

# Compute which segments are larger than the kernel.
deb_limit = self.kernel.size
Expand All @@ -2745,8 +2751,10 @@ def _evaluate_segmentation_image(self, segm_img, image_data, big_island_only=Fal
# and is_poor_quality should be set to True. The is_poor_quality is only an indicator that
# a different kernel type or background computation could be tried for improved results.
if biggest_source > max_biggest_source:
log.info("Biggest source %.4f percent exceeds %f percent of the image", (100.0*biggest_source), (100.0*max_biggest_source))
log.info("Biggest source %.4f percent exceeds %f percent of the image.", (100.0*biggest_source), (100.0*max_biggest_source))
is_poor_quality = True
else:
log.info("Biggest source %.4f percent is WITHIN THE ACCEPTABLE limit of %f percent.", (100.0*biggest_source), (100.0*max_biggest_source))

# Filter the big_segments array to remove the prohibitively large segments
if big_segments.size > 0:
Expand Down Expand Up @@ -2793,11 +2801,14 @@ def _evaluate_segmentation_image(self, segm_img, image_data, big_island_only=Fal
# big_island_only parameter allows control over whether the source_fraction should
# or should not be ignored.
source_fraction = n.sum()/float(real_pixels)
log.info("Source_fraction: %f", source_fraction)
if not big_island_only:
if source_fraction > max_source_fraction:
log.info("Total source fraction %.4f percent exceeds %f percent of the image.", (100.0*source_fraction), (100.0*max_source_fraction))
is_poor_quality = True
else:
log.info("Total source fraction %.4f percent is WITHIN THE ACCEPTABLE limit of %f percent.", (100.0*source_fraction), (100.0*max_source_fraction))
else:
log.info("Total source fraction %.4f percent is computed, but not set to be considered as a rejection criterion.", (100.0*source_fraction))

return is_poor_quality, biggest_source, source_fraction

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,10 @@
"border": 10,
"rw2d_size": 15,
"rw2d_nsigma": 10.0,
"rw2d_biggest_source": 0.045,
"rw2d_source_fraction": 0.15,
"biggest_source_limit": 0.045,
"biggest_fraction_limit": 0.15,
"biggest_source_deblend_limit": 0.15,
"rw_biggest_source_limit": 0.05,
"source_fraction_deblend_limit": 0.20,
"ratio_bigsource_limit": 2,
"ratio_bigsource_deblend_limit": 10,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@
"border": 10,
"rw2d_size": 23,
"rw2d_nsigma": 10.0,
"rw2d_biggest_source": 0.045,
"rw2d_source_fraction": 0.15,
"biggest_source_limit": 0.045,
"biggest_fraction_limit": 0.15,
"rw_biggest_source_limit": 0.05,
"biggest_source_deblend_limit": 0.15,
"source_fraction_deblend_limit": 0.20,
"ratio_bigsource_limit": 2,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
"flag_trim_value": 5,
"simple_bkg": false,
"zero_percent": 25.0,
"negative_percent": 15.0,
"negative_percent": 20.0,
"nsigma_clip": 3.0,
"maxiters": 3,
"bkg_skew_threshold": 0.5,
Expand All @@ -36,9 +36,10 @@
"contrast": 0.001,
"border": 10,
"rw2d_size": 15,
"rw2d_nsigma": 10.0,
"rw2d_biggest_source": 0.015,
"rw2d_source_fraction": 0.075,
"rw2d_nsigma": 40.0,
"biggest_source_limit": 0.015,
"biggest_fraction_limit": 0.075,
"rw_biggest_source_limit": 0.05,
"biggest_source_deblend_limit": 0.15,
"source_fraction_deblend_limit": 0.20,
"ratio_bigsource_limit": 2,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@
"border": 10,
"rw2d_size": 11,
"rw2d_nsigma": 10.0,
"rw2d_biggest_source": 0.045,
"rw2d_source_fraction": 0.15,
"biggest_source_limit": 0.045,
"biggest_fraction_limit": 0.15,
"rw_biggest_source_limit": 0.05,
"biggest_source_deblend_limit": 0.15,
"source_fraction_deblend_limit": 0.20,
"ratio_bigsource_limit": 2,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@
"border": 10,
"rw2d_size": 15,
"rw2d_nsigma": 10.0,
"rw2d_biggest_source": 0.015,
"rw2d_source_fraction": 0.075,
"biggest_source_limit": 0.015,
"biggest_fraction_limit": 0.075,
"rw_biggest_source_limit": 0.05,
"biggest_source_deblend_limit": 0.15,
"source_fraction_deblend_limit": 0.20,
"ratio_bigsource_limit": 2,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@
"border": 10,
"rw2d_size": 11,
"rw2d_nsigma": 10.0,
"rw2d_biggest_source": 0.045,
"rw2d_source_fraction": 0.15,
"biggest_source_limit": 0.045,
"biggest_fraction_limit": 0.15,
"rw_biggest_source_limit": 0.05,
"biggest_source_deblend_limit": 0.15,
"source_fraction_deblend_limit": 0.20,
"ratio_bigsource_limit": 2,
Expand Down