-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1666 from bhilbert4/add-ML-wisp-finder
Add wisp finder monitor
- Loading branch information
Showing
9 changed files
with
846 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
151 changes: 151 additions & 0 deletions
151
jwql/instrument_monitors/nircam_monitors/prepare_wisp_pngs.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
#! /usr/bin/env python | ||
|
||
""" | ||
Given a fits file, prepare an image of the data that can be provided to the ML wisp | ||
prediction model. | ||
""" | ||
|
||
import argparse | ||
import numpy as np | ||
from astropy.io import fits | ||
from astropy.stats import sigma_clipped_stats | ||
import os | ||
from PIL import Image | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
def create_figure(image, outfile): | ||
"""Create a figure of the scaled, resized image | ||
Parameters | ||
---------- | ||
image : PIL.Image.Image | ||
Image to be saved | ||
outfile : str | ||
Name of file it save the image into | ||
""" | ||
plt.imshow(image, origin='lower') | ||
plt.axis('off') | ||
plt.savefig(outfile, bbox_inches='tight') | ||
|
||
|
||
def rescale_array(arr): | ||
"""Rescales an array to the range 0-255. | ||
Parameters | ||
---------- | ||
arr : nump.ndarray | ||
2D image array | ||
Returns | ||
------- | ||
adjusted_image : numpy.ndarray | ||
Rescaled image | ||
""" | ||
# Calculate basic stats on the image | ||
mn, med, dev = sigma_clipped_stats(arr) | ||
|
||
# Don't worry about any pixels more than 2-sigma from the peak value | ||
maximum_gray = med + dev * 1. | ||
minimum_gray = med | ||
|
||
# Calculate scaling factor and contrast adjustment | ||
alpha = 255 / (maximum_gray - minimum_gray) | ||
beta = -minimum_gray * alpha | ||
|
||
# Rescale the image | ||
adjusted_image = alpha * arr + beta | ||
adjusted_image = np.clip(adjusted_image, 0, 255).astype(np.uint8) | ||
|
||
return adjusted_image | ||
|
||
|
||
def resize_image(arr): | ||
"""Resize the input image to the size expected by the ML model | ||
Parameters | ||
---------- | ||
arr : numpy.ndarray | ||
2D image to te resized | ||
Returns | ||
------- | ||
resized_image : PIL.Image.Image | ||
Resized image | ||
""" | ||
img = Image.fromarray(arr) | ||
resized_image = img.resize(size=(256, 256)) | ||
return resized_image | ||
|
||
|
||
def add_options(parser=None, usage='', conflict_handler='resolve'): | ||
""" | ||
Add command line options | ||
Parrameters | ||
----------- | ||
parser : argparse.parser | ||
Parser object | ||
usage : str | ||
Usage string | ||
conflict_handler : str | ||
Conflict handling strategy | ||
Returns | ||
------- | ||
parser : argparse.parser | ||
Parser object with added options | ||
""" | ||
if parser is None: | ||
parser = argparse.ArgumentParser(usage=usage, conflict_handler=conflict_handler) | ||
|
||
parser.add_argument('filename', type=str, default='', help='File from which to create image') | ||
return parser | ||
|
||
|
||
def run(filename, out_dir=None): | ||
"""Main function. Read in fits file, create scaled and resized image. Save | ||
as png. | ||
Parameters | ||
---------- | ||
filename : str | ||
Name of fits file | ||
out_dir : str | ||
Output directory in which to save the final png file | ||
Returns | ||
------- | ||
output_file : str | ||
Full path to the output png file | ||
""" | ||
data = fits.getdata(filename) | ||
|
||
# Get the basename of the input file. This will be used to create | ||
# the output png file name | ||
outfile_base = os.path.basename(filename).split('.')[0] | ||
|
||
# Rescale and adjust contrast of the image | ||
adjusted_image = rescale_array(data) | ||
|
||
# Resize image to 256x256 pixels | ||
shrunk_img = resize_image(adjusted_image) | ||
|
||
# Create output filename | ||
output_file = f'{outfile_base}.png' | ||
if out_dir is not None: | ||
output_file = os.path.join(out_dir, output_file) | ||
|
||
# Create image and save | ||
create_figure(shrunk_img, output_file) | ||
return output_file | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = add_options() | ||
args = parser.parse_args() | ||
run(args.filename) |
Oops, something went wrong.