git clone https://github.com/stair-lab/bo4ag
cd your_repository
- Create a
python 3.10
conda environment pip install -r requirements.txt
- The coheritability data can be found on [huggingface](https://huggingface.co/datasets/stair-lab/coh2 or google drive.
- Download the files to
./Benchmark/data
.
cd Benchmarks
- Run
python run_BO.py --env <environment>
Options:
Argument | Description | Default Value | Example |
---|---|---|---|
--env |
Environment to run the search (e.g. narea, sla, pn, ps) | None | --env narea |
--kernel |
Kernel function for the Gaussian process | rbf |
--kernel matern52 |
--acq |
Acquisition function | EI |
--acq EI |
--transform |
Transforming on the search space | None | -- transform log |
--n |
Number of iterations | 300 |
--n 300 |
--gpu |
GPU id to run the job | 0 |
--gpu 0 |
--run_name |
Name of the folder to move outputs | None | --run_name test |
You can copy and paste this markdown table into your README.md file.
Example: python main.py --env narea --n 30 --kernel matern12 --acq EI --run_name test
cd Benchmarks
- Run
python gp_fit.py --env <trait> --n <number of iterations> --kernel <kernel> --acq <acquisition function>