-
Notifications
You must be signed in to change notification settings - Fork 896
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
106 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torchtext.vocab import GloVe | ||
from torchtext.data import get_tokenizer | ||
|
||
# Define a custom model for your binary classifier | ||
class LemmaClassifier(nn.Module): | ||
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, embeddings): | ||
super(LemmaClassifier, self).__init__() | ||
|
||
# Embedding layer with GloVe embeddings | ||
self.embedding = nn.Embedding.from_pretrained(embeddings, padding_idx=0) | ||
|
||
# LSTM layer | ||
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True) | ||
|
||
# MLP layers | ||
self.mlp = nn.Sequential( | ||
nn.Linear(hidden_dim + 1, 64), # Add 1 for positional index | ||
nn.ReLU(), | ||
nn.Linear(64, output_dim) | ||
) | ||
|
||
def forward(self, text, pos_index): | ||
# Token embeddings | ||
embedded = self.embedding(text) | ||
|
||
# LSTM forward pass | ||
lstm_out, (hidden, _) = self.lstm(embedded) | ||
|
||
# Extract the last hidden state | ||
print(lstm_out) | ||
lstm_out = lstm_out[-1] | ||
|
||
# Concatenate the last hidden state with positional index | ||
print(f"LSTM OUT: {lstm_out}, shape: {lstm_out.shape}") | ||
print(f"POS INDEX: {pos_index}, shape: {pos_index.shape}") | ||
# concatenated = torch.cat((lstm_out, pos_index), dim=1) | ||
concatenated = torch.cat((lstm_out, pos_index), dim=0) | ||
print(concatenated, concatenated.shape) | ||
|
||
|
||
# MLP forward pass | ||
output = self.mlp(concatenated) | ||
|
||
print(output) | ||
|
||
return output | ||
|
||
# Define the hyperparameters | ||
vocab_size = 10000 # Adjust based on your dataset | ||
embedding_dim = 100 | ||
hidden_dim = 256 | ||
output_dim = 2 # Binary classification (be or have) | ||
|
||
# Load GloVe embeddings (adjust the path and dimensions) | ||
glove = GloVe(name='6B', dim=embedding_dim) | ||
vocab_size = len(glove.itos) # Size of the GloVe vocabulary | ||
|
||
# Initialize the model with GloVe embeddings | ||
model = LemmaClassifier(vocab_size, embedding_dim, hidden_dim, output_dim, glove.vectors) | ||
|
||
# Define the loss and optimizer | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.Adam(model.parameters(), lr=0.001) | ||
|
||
# Sample input data (make sure to adapt this to your dataset) | ||
tokenizer = get_tokenizer('basic_english') | ||
sentence = "The cat's tail is long" | ||
# tokenized_sentence = tokenizer(sentence) # Tokenize the input sentence , maybe use stanza next time | ||
tokenized_sentence = ['the', 'cat', "'s", 'tail', 'is', 'long'] | ||
|
||
# Convert the tokenized input to a tensor | ||
# tokenized_text = [word for word in tokenized_sentence] | ||
positional_index = tokenized_sentence.index("'s") | ||
tokenized_text = torch.tensor([glove.stoi[word] for word in tokenized_sentence]) # maybe just word not glove.stoi[word] | ||
|
||
print(tokenized_text) | ||
|
||
positional_index = torch.tensor([positional_index]) # Convert positional index to tensor | ||
|
||
# Forward pass | ||
output = model(tokenized_text, positional_index) | ||
print(output) | ||
# output_probs = torch.softmax(output, dim=0) | ||
|
||
# # Choose the class with the highest probability as the prediction | ||
# predicted_class = torch.argmax(output_probs, dim=0) | ||
|
||
# print(predicted_class, predicted_class.shape) | ||
|
||
# Compute the loss | ||
# target = torch.tensor([0], dtype=torch.long) # 0 for "be" and 1 for "have" | ||
# Define the target label (0 for "be" and 1 for "have") | ||
target = torch.tensor([0, 1], dtype=torch.float) # Use dtype=torch.long for class labels, but torch.float seems to make this work | ||
print(target) | ||
loss = criterion(output, target) | ||
print(loss) | ||
|
||
# Backpropagation and optimization | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
# Training loop and evaluation code can be added here |