Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed the code in transfer_learning_with_hub.ipynb #2344

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 15 additions & 13 deletions site/en/tutorials/images/transfer_learning_with_hub.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -90,13 +90,15 @@
},
"outputs": [],
"source": [
"pip install tf-keras\n",
"import numpy as np\n",
"import time\n",
"\n",
"import PIL.Image as Image\n",
"import matplotlib.pylab as plt\n",
"\n",
"import tensorflow as tf\n",
"import tf_keras as keras\n",
"import tensorflow_hub as hub\n",
"\n",
"import datetime\n",
Expand Down Expand Up @@ -150,7 +152,7 @@
"source": [
"IMAGE_SHAPE = (224, 224)\n",
"\n",
"classifier = tf.keras.Sequential([\n",
"classifier = keras.Sequential([\n",
" hub.KerasLayer(classifier_model, input_shape=IMAGE_SHAPE+(3,))\n",
"])"
]
Expand Down Expand Up @@ -181,7 +183,7 @@
},
"outputs": [],
"source": [
"grace_hopper = tf.keras.utils.get_file('image.jpg','https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg')\n",
"grace_hopper = keras.utils.get_file('image.jpg','https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg')\n",
"grace_hopper = Image.open(grace_hopper).resize(IMAGE_SHAPE)\n",
"grace_hopper"
]
Expand Down Expand Up @@ -261,7 +263,7 @@
},
"outputs": [],
"source": [
"labels_path = tf.keras.utils.get_file('ImageNetLabels.txt','https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')\n",
"labels_path = keras.utils.get_file('ImageNetLabels.txt','https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')\n",
"imagenet_labels = np.array(open(labels_path).read().splitlines())"
]
},
Expand Down Expand Up @@ -323,7 +325,7 @@
"source": [
"import pathlib\n",
"\n",
"data_file = tf.keras.utils.get_file(\n",
"data_file = keras.utils.get_file(\n",
" 'flower_photos.tgz',\n",
" 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',\n",
" cache_dir='.',\n",
Expand Down Expand Up @@ -353,7 +355,7 @@
"img_height = 224\n",
"img_width = 224\n",
"\n",
"train_ds = tf.keras.utils.image_dataset_from_directory(\n",
"train_ds = keras.utils.image_dataset_from_directory(\n",
" str(data_root),\n",
" validation_split=0.2,\n",
" subset=\"training\",\n",
Expand All @@ -362,7 +364,7 @@
" batch_size=batch_size\n",
")\n",
"\n",
"val_ds = tf.keras.utils.image_dataset_from_directory(\n",
"val_ds = keras.utils.image_dataset_from_directory(\n",
" str(data_root),\n",
" validation_split=0.2,\n",
" subset=\"validation\",\n",
Expand Down Expand Up @@ -419,7 +421,7 @@
},
"outputs": [],
"source": [
"normalization_layer = tf.keras.layers.Rescaling(1./255)\n",
"normalization_layer = keras.layers.Rescaling(1./255)\n",
"train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) # Where x—images, y—labels.\n",
"val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) # Where x—images, y—labels."
]
Expand Down Expand Up @@ -633,9 +635,9 @@
"source": [
"num_classes = len(class_names)\n",
"\n",
"model = tf.keras.Sequential([\n",
"model = keras.Sequential([\n",
" feature_extractor_layer,\n",
" tf.keras.layers.Dense(num_classes)\n",
" keras.layers.Dense(num_classes)\n",
"])\n",
"\n",
"model.summary()"
Expand Down Expand Up @@ -683,12 +685,12 @@
"outputs": [],
"source": [
"model.compile(\n",
" optimizer=tf.keras.optimizers.Adam(),\n",
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" optimizer=keras.optimizers.Adam(),\n",
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['acc'])\n",
"\n",
"log_dir = \"logs/fit/\" + datetime.datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n",
"tensorboard_callback = tf.keras.callbacks.TensorBoard(\n",
"tensorboard_callback = keras.callbacks.TensorBoard(\n",
" log_dir=log_dir,\n",
" histogram_freq=1) # Enable histogram computation for every epoch."
]
Expand Down Expand Up @@ -846,7 +848,7 @@
},
"outputs": [],
"source": [
"reloaded = tf.keras.models.load_model(export_path)"
"reloaded = keras.models.load_model(export_path)"
]
},
{
Expand Down
Loading