Skip to content

Commit

Permalink
cleanup of deprecated test methods
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 722607226
  • Loading branch information
tensorflower-gardener authored and copybara-github committed Feb 3, 2025
1 parent 8f60a93 commit ad932c3
Show file tree
Hide file tree
Showing 10 changed files with 60 additions and 51 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,7 @@ def test_feature_steered_convolution_exception_raised_types(
data, neighbors, sizes = _random_data(1, 5, 3, True, False, data_type,
neighbors_type, sizes_type)
u, v, c, w, b = _random_variables(3, 3, 1, var_type)
with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
_ = gc.feature_steered_convolution(
data=data,
neighbors=neighbors,
Expand Down Expand Up @@ -178,7 +178,7 @@ def test_feature_steered_convolution_exception_not_raised_types(

def test_feature_steered_convolution_exception_raised_shapes(self):
"""Check that invalid input shapes trigger the right exceptions."""
with self.assertRaisesRegexp(ValueError, "must have a rank of 2"):
with self.assertRaisesRegex(ValueError, "must have a rank of 2"):
data, neighbors = _dummy_data(1, 5, 2)
u, v, c, w, b = _dummy_variables(2, 2, 1)
data = data[0, :]
Expand All @@ -192,7 +192,7 @@ def test_feature_steered_convolution_exception_raised_shapes(self):
var_w=w,
var_b=b)

with self.assertRaisesRegexp(ValueError, "must have a rank greater than 1"):
with self.assertRaisesRegex(ValueError, "must have a rank greater than 1"):
u, v, c, w, b = _dummy_variables(2, 2, 1)
data = np.ones(shape=(5), dtype=np.float32)
neighbors = _dense_to_sparse(np.ones(shape=(5), dtype=np.float32))
Expand All @@ -206,8 +206,9 @@ def test_feature_steered_convolution_exception_raised_shapes(self):
var_w=w,
var_b=b)

with self.assertRaisesRegexp(ValueError,
"Not all batch dimensions are identical."):
with self.assertRaisesRegex(
ValueError, "Not all batch dimensions are identical."
):
data, neighbors = _dummy_data(1, 5, 2)
u, v, c, w, b = _dummy_variables(2, 2, 1)
_ = gc.feature_steered_convolution(
Expand Down Expand Up @@ -553,7 +554,7 @@ def test_edge_convolution_template_exception_raised_types(
"""Check the type errors for invalid input types."""
data, neighbors, sizes = _random_data(1, 5, 3, True, False, data_type,
neighbors_type, sizes_type)
with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
gc.edge_convolution_template(
data=data,
neighbors=neighbors,
Expand Down Expand Up @@ -590,7 +591,7 @@ def test_edge_convolution_template_exception_not_raised_types(

def test_edge_convolution_template_exception_raised_shapes(self):
"""Check that invalid input shapes trigger the right exceptions."""
with self.assertRaisesRegexp(ValueError, "must have a rank of 2"):
with self.assertRaisesRegex(ValueError, "must have a rank of 2"):
data, neighbors = _dummy_data(1, 5, 2)
data = data[0, :]
_ = gc.edge_convolution_template(
Expand All @@ -601,7 +602,7 @@ def test_edge_convolution_template_exception_raised_shapes(self):
reduction="weighted",
edge_function_kwargs=dict())

with self.assertRaisesRegexp(ValueError, "must have a rank greater than 1"):
with self.assertRaisesRegex(ValueError, "must have a rank greater than 1"):
data = np.ones(shape=(5), dtype=np.float32)
neighbors = _dense_to_sparse(np.ones(shape=(5), dtype=np.float32))
_ = gc.edge_convolution_template(
Expand All @@ -612,7 +613,7 @@ def test_edge_convolution_template_exception_raised_shapes(self):
reduction="weighted",
edge_function_kwargs=dict())

with self.assertRaisesRegexp(ValueError, "must have a rank of 1"):
with self.assertRaisesRegex(ValueError, "must have a rank of 1"):
data, neighbors = _dummy_data(1, 5, 2)
_ = gc.edge_convolution_template(
data=data,
Expand All @@ -626,7 +627,7 @@ def test_edge_convolution_template_exception_raised_shapes(self):
def test_edge_convolution_template_exception_raised_reduction(
self, reduction):
"""Check that an invalid reduction method triggers the exception."""
with self.assertRaisesRegexp(ValueError, "reduction method"):
with self.assertRaisesRegex(ValueError, "reduction method"):
data, neighbors = _dummy_data(1, 5, 2)
gc.edge_convolution_template(
data=data,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def test_pool_exception_raised_types(self, err_msg, data_type, pool_map_type,
pool_map = _dense_to_sparse(np.ones((2, 3, 3), dtype=pool_map_type))
sizes = np.array(((1, 2), (2, 3)), dtype=sizes_type)

with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
gp.pool(data, pool_map, sizes)

@parameterized.parameters(
Expand All @@ -80,16 +80,17 @@ def test_pool_exception_raised_shapes(self, err_msg, data_shape,
else:
sizes = None

with self.assertRaisesRegexp(ValueError, err_msg):
with self.assertRaisesRegex(ValueError, err_msg):
gp.pool(data, pool_map, sizes)

def test_pool_exception_raised_algorithm(self):
"""Tests the correct exception is raised for an invalid algorithm."""
data = np.ones(shape=(2, 2))
pool_map = _dense_to_sparse(np.ones(shape=(2, 2)))

with self.assertRaisesRegexp(
ValueError, 'The pooling method must be "weighted" or "max"'):
with self.assertRaisesRegex(
ValueError, 'The pooling method must be "weighted" or "max"'
):
gp.pool(data, pool_map, sizes=None, algorithm='mean')

@parameterized.parameters(
Expand Down Expand Up @@ -201,7 +202,7 @@ def test_unpool_exception_raised_types(self, err_msg, data_type,
pool_map = _dense_to_sparse(np.ones((2, 3, 3), dtype=pool_map_type))
sizes = np.array(((1, 2), (2, 3)), dtype=sizes_type)

with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
gp.unpool(data, pool_map, sizes)

@parameterized.parameters(
Expand All @@ -221,7 +222,7 @@ def test_unpool_exception_raised_shapes(self, err_msg, data_shape,
else:
sizes = None

with self.assertRaisesRegexp(ValueError, err_msg):
with self.assertRaisesRegex(ValueError, err_msg):
gp.unpool(data, pool_map, sizes)

@parameterized.parameters(
Expand Down Expand Up @@ -311,7 +312,7 @@ def test_upsample_transposed_convolution_exception_raised_types(
pool_map = _dense_to_sparse(np.ones((2, 3, 3), dtype=pool_map_type))
sizes = np.array(((1, 2), (2, 3)), dtype=sizes_type)

with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
gp.upsample_transposed_convolution(
data, pool_map, sizes, kernel_size=1, transposed_convolution_op=None)

Expand All @@ -332,7 +333,7 @@ def test_upsample_transposed_convolution_exception_raised_shapes(
else:
sizes = None

with self.assertRaisesRegexp(ValueError, err_msg):
with self.assertRaisesRegex(ValueError, err_msg):
gp.upsample_transposed_convolution(
data, pool_map, sizes, kernel_size=1, transposed_convolution_op=None)

Expand All @@ -342,7 +343,7 @@ def test_upsample_transposed_convolution_exception_raised_callable(self):
pool_map = _dense_to_sparse(np.eye(5))
err_msg = "'transposed_convolution_op' must be callable."

with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
gp.upsample_transposed_convolution(
data,
pool_map,
Expand Down
34 changes: 19 additions & 15 deletions tensorflow_graphics/geometry/convolution/tests/utils_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def test_check_valid_graph_convolution_input_exception_raised_types(
neighbors = _dense_to_sparse(np.ones(shape=(2, 2, 2), dtype=neighbors_type))
sizes = tf.convert_to_tensor(value=np.array((2, 2), dtype=sizes_type))

with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
utils.check_valid_graph_convolution_input(data, neighbors, sizes)

@parameterized.parameters(
Expand Down Expand Up @@ -187,7 +187,7 @@ def test_check_valid_graph_pooling_exception_raised_types(
sizes = tf.convert_to_tensor(
value=np.array(((1, 2), (2, 3)), dtype=sizes_type))

with self.assertRaisesRegexp(TypeError, err_msg):
with self.assertRaisesRegex(TypeError, err_msg):
utils.check_valid_graph_pooling_input(data, pool_map, sizes)

@parameterized.parameters(
Expand Down Expand Up @@ -305,8 +305,9 @@ def test_input_rank_exception_raised(self, *shapes):

def test_flatten_batch_to_2d_exception_raised_types(self):
"""Check the exception when input is not an integer."""
with self.assertRaisesRegexp(TypeError,
"'sizes' must have an integer type."):
with self.assertRaisesRegex(
TypeError, "'sizes' must have an integer type."
):
utils.flatten_batch_to_2d(np.ones((3, 4, 3)), np.ones((3,)))

@parameterized.parameters(
Expand Down Expand Up @@ -433,8 +434,9 @@ def test_input_rank_exception_raised(self, *shapes):

def test_input_type_exception_raised(self):
"""Check that invalid input types trigger the right exception."""
with self.assertRaisesRegexp(TypeError,
"'sizes' must have an integer type."):
with self.assertRaisesRegex(
TypeError, "'sizes' must have an integer type."
):
utils.unflatten_2d_to_batch(np.ones((3, 4)), np.ones((3,)))

@parameterized.parameters(
Expand Down Expand Up @@ -518,38 +520,40 @@ def _validate_sizes(self, block_diag_tensor, sizes):

def test_convert_to_block_diag_2d_exception_raised_types(self):
"""Check the exception when input is not a SparseTensor."""
with self.assertRaisesRegexp(TypeError, "'data' must be a 'SparseTensor'."):
with self.assertRaisesRegex(TypeError, "'data' must be a 'SparseTensor'."):
utils.convert_to_block_diag_2d(np.zeros(shape=(3, 3, 3)))

with self.assertRaisesRegexp(TypeError,
"'sizes' must have an integer type."):
with self.assertRaisesRegex(
TypeError, "'sizes' must have an integer type."
):
utils.convert_to_block_diag_2d(
_dense_to_sparse(np.ones(shape=(3, 3, 3))),
np.ones(shape=(3, 2)),
)

def test_convert_to_block_diag_2d_exception_raised_ranks(self):
"""Check the exception when input data rank is invalid."""
with self.assertRaisesRegexp(ValueError, "must have a rank greater than 2"):
with self.assertRaisesRegex(ValueError, "must have a rank greater than 2"):
utils.convert_to_block_diag_2d(_dense_to_sparse(np.ones(shape=(3, 3))))

with self.assertRaisesRegexp(ValueError, "must have a rank greater than 2"):
with self.assertRaisesRegex(ValueError, "must have a rank greater than 2"):
utils.convert_to_block_diag_2d(_dense_to_sparse(np.ones(shape=(3,))))

def test_convert_to_block_diag_2d_exception_raised_sizes(self):
"""Check the expetion when the shape of sizes is invalid."""
with self.assertRaisesRegexp(ValueError, "must have a rank of 2"):
with self.assertRaisesRegex(ValueError, "must have a rank of 2"):
utils.convert_to_block_diag_2d(
_dense_to_sparse(np.ones(shape=(3, 3, 3))),
np.ones(shape=(3,), dtype=np.int32))

with self.assertRaisesRegexp(ValueError, "must have a rank of 3"):
with self.assertRaisesRegex(ValueError, "must have a rank of 3"):
utils.convert_to_block_diag_2d(
_dense_to_sparse(np.ones(shape=(4, 3, 3, 3))),
np.ones(shape=(4, 3), dtype=np.int32))

with self.assertRaisesRegexp(ValueError,
"must have exactly 2 dimensions in axis -1"):
with self.assertRaisesRegex(
ValueError, "must have exactly 2 dimensions in axis -1"
):
utils.convert_to_block_diag_2d(
_dense_to_sparse(np.ones(shape=(3, 3, 3))),
np.ones(shape=(3, 1), dtype=np.int32))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def test_negative_weights_random_face_indices_exception(self):
face_wts = np.array([0.1, -0.1], dtype=np.float32)
num_samples = 10
error_msg = "Condition x >= y did not hold."
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, error_msg):
with self.assertRaisesRegex(tf.errors.InvalidArgumentError, error_msg):
sampler.generate_random_face_indices(num_samples, face_weights=face_wts)

@parameterized.parameters(
Expand Down Expand Up @@ -154,7 +154,7 @@ def test_weighted_sampler_negative_weights(self):
face_wts = np.array([-0.3, 0.1, 0.5, 0.6], dtype=np.float32)
num_samples = 10
error_msg = "Condition x >= y did not hold."
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, error_msg):
with self.assertRaisesRegex(tf.errors.InvalidArgumentError, error_msg):
sampler.weighted_random_sample_triangle_mesh(
vertices, faces, num_samples, face_weights=face_wts)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def test_extract_directed_edges_from_triangular_mesh_preset(
def test_extract_edges_from_triangular_mesh_raised(
self, invalid_input, error_msg):
"""Tests that the shape exceptions are properly raised."""
with self.assertRaisesRegexp(ValueError, error_msg):
with self.assertRaisesRegex(ValueError, error_msg):
utils.extract_unique_edges_from_triangular_mesh(invalid_input)

@parameterized.parameters(
Expand Down Expand Up @@ -98,7 +98,7 @@ def test_get_degree_based_edge_weights_preset(
def test_get_degree_based_edge_weights_invalid_edges_raised(
self, invalid_input, error_msg):
"""Tests that the shape exceptions are properly raised."""
with self.assertRaisesRegexp(ValueError, error_msg):
with self.assertRaisesRegex(ValueError, error_msg):
utils.get_degree_based_edge_weights(invalid_input)

@parameterized.parameters(
Expand All @@ -111,7 +111,7 @@ def test_get_degree_based_edge_weights_invalid_edges_raised(
def test_get_degree_based_edge_weights_dtype_raised(
self, invalid_type, error_msg):
"""Tests that the shape exceptions are properly raised."""
with self.assertRaisesRegexp(ValueError, error_msg):
with self.assertRaisesRegex(ValueError, error_msg):
utils.get_degree_based_edge_weights(np.array(((1, 1),)), invalid_type)

if __name__ == "__main__":
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -508,13 +508,14 @@ def test_normalized_random_initializer_raised(self):
tensor_shape = np.random.randint(1, 10, size=(tensor_size)).tolist()

with self.subTest(name="dtype"):
with self.assertRaisesRegexp(ValueError, "'dtype' must be tf.float32."):
with self.assertRaisesRegex(ValueError, "'dtype' must be tf.float32."):
quaternion.normalized_random_uniform_initializer()(
tensor_shape + [4], dtype=tf.uint8)

with self.subTest(name="shape"):
with self.assertRaisesRegexp(ValueError,
"Last dimension of 'shape' must be 4."):
with self.assertRaisesRegex(
ValueError, "Last dimension of 'shape' must be 4."
):
quaternion.normalized_random_uniform_initializer()(
tensor_shape + [3], dtype=tf.float32)

Expand Down
11 changes: 6 additions & 5 deletions tensorflow_graphics/io/tests/exr_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,23 +79,24 @@ def test_write_read_roundtrip(self, num_channels, datatype, pass_channels):
def test_reading_mixed_datatypes_fails(self):
with tempfile.NamedTemporaryFile() as temp:
_WriteMixedDatatypesExr(temp.name)
with self.assertRaisesRegexp(ValueError, 'Channels have mixed datatypes'):
with self.assertRaisesRegex(ValueError, 'Channels have mixed datatypes'):
_, _ = exr.read_exr(temp.name)

def test_writing_with_array_channel_name_mismatch_fails(self):
array_three_channels = np.zeros([64, 64, 3], dtype=np.float32)
names_two_channels = ['A', 'B']
with tempfile.NamedTemporaryFile() as temp:
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError,
'Number of channels in values does not match channel names'):
'Number of channels in values does not match channel names',
):
exr.write_exr(temp.name, array_three_channels, names_two_channels)

def test_writing_unsupported_numpy_type_fails(self):
uint8_array = np.zeros([64, 64, 3], dtype=np.uint8)
names = ['R', 'G', 'B']
with tempfile.NamedTemporaryFile() as temp:
with self.assertRaisesRegexp(TypeError, 'Unsupported numpy type'):
with self.assertRaisesRegex(TypeError, 'Unsupported numpy type'):
exr.write_exr(temp.name, uint8_array, names)

def test_reading_unknown_exr_type_fails(self):
Expand All @@ -109,7 +110,7 @@ def test_reading_unknown_exr_type_fails(self):
header_dict['channels']['R'].type.v = -1 # Any bad value will do.
make_mock_exr = collections.namedtuple('MockExr', ['header', 'channel'])
mock_broken_exr = make_mock_exr(lambda: header_dict, exr_file.channel)
with self.assertRaisesRegexp(RuntimeError, 'Unknown EXR channel type'):
with self.assertRaisesRegex(RuntimeError, 'Unknown EXR channel type'):
_ = exr.channels_to_ndarray(mock_broken_exr, ['R', 'G', 'B'])


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -69,8 +69,9 @@ def test_evaluate_preset(self, ground_truth, predictions, expected_iou):
def test_evaluate_invalid_argument_exception_raised(self, error_msg,
ground_truth, predictions,
grid_size):
with self.assertRaisesRegexp((tf.errors.InvalidArgumentError, ValueError),
error_msg):
with self.assertRaisesRegex(
(tf.errors.InvalidArgumentError, ValueError), error_msg
):
self.evaluate(
intersection_over_union.evaluate(ground_truth, predictions,
grid_size))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ def test_invalid_variable_inputs(self, error_msg, variable_names,
error = error_eager
else:
error = error_graph_mode
with self.assertRaisesRegexp(error, error_msg):
with self.assertRaisesRegex(error, error_msg):
self.evaluate(
rasterization_backend.render_ops.rasterize(
num_points=0,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def test_rasterizer_return_correct_batch_shapes(self, shapes, dtypes,
def test_rasterizer_rasterize_exception_raised(self, shapes, dtypes, backend):
"""Tests that unsupported backends raise exceptions."""
placeholders = self._create_placeholders(shapes, dtypes)
with self.assertRaisesRegexp(KeyError, 'Backend is not supported'):
with self.assertRaisesRegex(KeyError, 'Backend is not supported'):
rasterization_backend.rasterize(placeholders[0], placeholders[1],
placeholders[2],
(self.IMAGE_WIDTH, self.IMAGE_HEIGHT),
Expand Down

0 comments on commit ad932c3

Please sign in to comment.