Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added passes for QDQ reconstruction #11

Merged
merged 1 commit into from
Jul 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions python/tvm/contrib/pybuda_compile.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,6 +459,67 @@ def trim_count(name):

return json_graph


def duplicate_dequantize_nodes_in_onnx_graph(onnx_module):
from collections import defaultdict

# Create a dictionary to store the consumers of each tensor
tensor_consumers = defaultdict(list)

graph = onnx_module.graph
# Populate the tensor_consumers dictionary
for node in graph.node:
for input_name in node.input:
tensor_consumers[input_name].append(node.name)

# Find and duplicate nodes with output branches
nodes_to_add = []
nodes_to_remove = []
indices_for_adding = []
for node_ind, node in enumerate(graph.node):

if node.op_type != "DequantizeLinear":
continue

output_name = node.output[0]
consumers = tensor_consumers[output_name]

if len(consumers) > 1:
# Duplicate the node for each consumer
for i, consumer_name in enumerate(consumers):
new_node_name = node.name + f"_clone{i}"
new_output_name = output_name + f"_clone{i}"

cloned_node = onnx.helper.make_node(
node.op_type,
node.input,
[new_output_name],
name=new_node_name
)

# Add the cloned node to the list of nodes to add
nodes_to_add.append(cloned_node)
indices_for_adding.append((cloned_node, node_ind))

# Update the consumer to use the cloned node's output
consumer_node = next(n for n in graph.node if n.name == consumer_name)
for j, input_name in enumerate(consumer_node.input):
if input_name == output_name:
consumer_node.input[j] = new_output_name

# Remove the original node since it will be replaced by its clones
nodes_to_remove.append(node)


# This is needed to remain the order of the nodes in graph
# since graph is not put in topsort order when visiting nodes
for i, (node, insertion_index) in enumerate(indices_for_adding):
graph.node.insert(insertion_index + i, node)

for node in nodes_to_remove:
graph.node.remove(node)


def compile_onnx_for_buda(onnx_mod, path, *inputs, graph_name, compiler_cfg, verify_cfg=None):
import onnxruntime as ort

Expand All @@ -483,6 +544,7 @@ def compile_onnx_for_buda(onnx_mod, path, *inputs, graph_name, compiler_cfg, ver

assert len(input_names) == len(inputs), "Number of input names must match number of inputs"

duplicate_dequantize_nodes_in_onnx_graph(onnx_mod)
framework_outputs = extract_framework_model_outputs(
framework="onnx",
model=onnx_mod,
Expand Down
18 changes: 2 additions & 16 deletions python/tvm/relay/op/contrib/buda/buda_passes.py
Original file line number Diff line number Diff line change
Expand Up @@ -2232,19 +2232,6 @@ def callback(self, pre, post, node_map):
return tvm.relay.gelu(node_map[self.act][0])


class RemoveQuantDequantSequence(DFPatternCallback):
def __init__(self):
super().__init__(rewrite_once=True, require_type=True)
self.act = wildcard()
self.quant = is_op("qnn.quantize")(self.act, wildcard(), wildcard(),)
self.pattern = is_op("qnn.dequantize")(self.quant, wildcard(), wildcard(),)

def callback(self, pre, post, node_map):
act = node_map[self.act][0]
quant = node_map[self.quant][0]
return node_map[self.act][0]


class ReconstructOnnxQuantizedGelu(DFPatternCallback):
def __init__(self):
super().__init__(rewrite_once=True, require_type=True)
Expand Down Expand Up @@ -3364,7 +3351,7 @@ def callback(self, pre, post, node_map):
if index != val:
count += 1

assert (count == 2, "Multi-axis transpose should be decomposed into single-axis transpose at this point")
assert count == 2, "Multi-axis transpose should be decomposed into single-axis transpose at this point"
is_transpose_yz = len(transpose_axes) >= 3 and len(dims) >= 3 and (transpose_axes[-2] == dims[-3] and transpose_axes[-3] == dims[-2])

if (
Expand Down Expand Up @@ -3805,7 +3792,7 @@ def _get_callback_name(callback):
elif isinstance(callback, tvm.transform.Pass):
return callback.info.name
else:
raise NotImplementedError(f"Type of callback ({type(callback)}) not implemented")
raise NotImplementedError(f"Type of callback ({(callback)}) not implemented")


def _run_pattern_callback(relay_module, callback, callback_name):
Expand Down Expand Up @@ -3902,7 +3889,6 @@ def run_buda_compile_passes(relay_module, params=None, inputs=None, target=None,
ConvertGlobalAvgPool2dtoAvgPool2d(),
ConvertUpsampleToResize2d(),
DecomposeMultiIndexAdvIndex(),
RemoveQuantDequantSequence(),
ReconstructOnnxQuantizedGelu(),
DecomposeQnnConcat(),
# DecomposeErf(),
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/relay/op/contrib/buda/relay_passes.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@


def fskip_eliminate(expr):
if isinstance(expr, relay.expr.Call) and expr.op.name == "transpose":
if isinstance(expr, relay.expr.Call) and (expr.op.name == "transpose" or expr.op.name == "qnn.dequantize" or expr.op.name == "qnn.quantize"):
return True
return False

Expand Down