An intelligent meeting minutes generator powered by Azure OpenAI and Streamlit. This application transforms meeting transcripts into well-structured, actionable documentation with automated analysis and multiple export formats.
- Multiple Input Formats: Support for TXT, PDF, DOCX, and MD files
- Intelligent Processing: Uses Azure OpenAI for content generation and analysis
- Rich Output Formats: Export as Markdown, DOCX, or PDF
- Meeting Analysis: Automated scoring across multiple dimensions:
- Meeting Effectiveness
- Participation & Engagement
- Action Item Management
- Risk Management
- Communication Quality
- Visual Documentation: Automated generation of Mermaid diagrams for:
- Process flows
- System architectures
- Timeline representations
- Organization structures
- Project dependencies
- Python 3.8+
- Pandoc (for document conversion)
- Mermaid-filter (for diagram generation)
- Azure OpenAI API access
- Clone the repository:
git clone https://github.com/yourusername/bch-ai-meeting-notes.git
cd bch-ai-meeting-notes
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Install system dependencies:
# On macOS
brew install pandoc
npm install -g mermaid-filter
# On Ubuntu/Debian
sudo apt-get install pandoc
npm install -g mermaid-filter
# On Windows
choco install pandoc
npm install -g mermaid-filter
- Create a
.env
file with your Azure OpenAI credentials:
AZURE_OPENAI_API_KEY=your_api_key
AZURE_OPENAI_API_VERSION=your_api_version
AZURE_OPENAI_API_BASE=your_endpoint
AZURE_OPENAI_DEPLOYMENT_NAME=your_deployment_name
streamlit run main.py
- Build the Docker image:
docker build -t bch-ai-meeting-notes .
- Run the container:
docker run -p 8501:8501 --env-file .env bch-ai-meeting-notes
Access the application at http://localhost:8501
- Choose input method:
- Upload a transcript file (TXT, PDF, DOCX, MD)
- Paste text directly
- Click "Generate Minutes"
- Review the generated minutes and analysis
- Download in your preferred format (MD, DOCX, PDF)
bch-ai-meeting-notes/
βββ main.py # Main application file
βββ schema.json # Analysis schema definition
βββ requirements.txt # Python dependencies
βββ .env # Environment variables (not in git)
βββ Dockerfile # Docker configuration
βββ docker-compose.yml # Docker Compose configuration
βββ images/ # Application images
βββ bch.png
βββ user.png
βββ user.svg
This project is licensed under the MIT License - see the LICENSE file for details.