Skip to content

Commit

Permalink
Update README
Browse files Browse the repository at this point in the history
  • Loading branch information
GKalliatakis committed Aug 26, 2020
1 parent fabde4e commit 5b6097d
Showing 1 changed file with 24 additions and 30 deletions.
54 changes: 24 additions & 30 deletions remote_sensing/README.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,6 @@
# Remote sensing with Python and Landsat 8 products
# Remote sensing with Python and Landsat 8 products in humanitarian contexts - finding the nexus between climate anomalies, human conflict and displacement


## Installation

### Requirements
## Installation - Requirements

* [espa-bulk-downloader](https://github.com/unhcr/Jetson/tree/master/remote_sensing/Landsat8/bulk-downloader) - Retrieves all completed scenes for the user/order
and places them into the target directory
Expand All @@ -13,46 +10,44 @@ and places them into the target directory
* [earthpy](https://earthpy.readthedocs.io/en/latest/get-started.html#install-earthpy) - EarthPy is a python package devoted to working with spatial and remote sensing data
* [geopandas](https://geopandas.org/install.html) - GeoPandas is an open source project to make working with geospatial data in python easier



---



## Project structure

```bash
├── Landsat8
│   ├── EVI_calculation.py
│   ├── MNDWI_calculation.py
├── Landsat8 # Main package for analysing Landsat 8 Satellite Images With Python Scientific Stack
│   ├── EVI_calculation.py # Enhanced Vegetation Index (EVI)
│   ├── MNDWI_calculation.py # Modified Normalized Difference Water Index (MNDWI)
│   ├── NDVI_calculation.py
│   ├── NDWI_calculation.py
│   ├── NDWI_calculation.py # Normalized Difference Water Index (NDWI)
│   ├── README.md
│   ├── VCI_calculation.py
│   ├── __init__.py
│   ├── bands_combos.py
│   ├── bulk-downloader -> Automatically downloads all completed espa scenes
│   ├── bands_combos.py
│   ├── bulk-downloader # Automatically downloads all completed espa scenes
│   │   ├── README.md
│   │   ├── UNLICENSE
│   │   ├── download.sh
│   │   ├── download_espa_order.py
│   │   ├── raster_processing.py
│   │   └── setup.py
│   ├── colour_img_processing_examples.py
│   ├── indices_def.md -> Formal definitions for different spectral vegetation indices
│   ├── landsat8_bands.py -> Explanation of Landsat 8 bands
│   ├── landsat8_utils.py -> Utilities related to Landsat 8 image processing
│   ├── plot_RGB_img.py -> Plots RGB band combination and creates composite images
│   ├── indices_def.md # Formal definitions for different spectral vegetation indices
│   ├── landsat8_bands.py # Explanation of Landsat 8 bands
│   ├── landsat8_utils.py # Utilities related to Landsat 8 image processing
│   ├── plot_RGB_img.py # Plots RGB band combination and creates composite images
│   └── spectral_vegatation_indices
│   ├── NDVI.py -> Calculate Normalized Difference Vegetation Index (NDVI)
│   ├── NDVI.py # Calculate Normalized Difference Vegetation Index (NDVI)
│   ├── README.md
│   ├── VCI.py -> per pixel NDVI value re-scaled according to the minimum and maximum values observed
│   ├── VCI.py # per pixel NDVI value re-scaled according to the minimum and maximum values observed
│   ├── __init__.py
│   ├── calculate_VCI.py -> Calculate Vegetation Condition Index (VCI)
│   └── create_raster_stack.py -> Generates a NumPy raster stack from multispectral satellite data
│   ├── calculate_VCI.py # Calculate Vegetation Condition Index (VCI)
│   └── create_raster_stack.py # Generates a NumPy raster stack from multispectral satellite data
├── README.md
├── __init__.py
└── utils.py -> Python utilities
└── utils.py # Python utilities
```


Expand All @@ -77,7 +72,7 @@ After the order of Landsat products has been made available, run the following c
python ./download_espa_order.py -d /path/to/a/dir/you/want/to/download -u username -o order_id
```

### Downloaded data structure
Example of the structure for some downloaded data

```bash
├── LC081630572013052001T1-SC20200610161219
Expand Down Expand Up @@ -116,8 +111,7 @@ Create a raster stack NumPy from the raw, multispectral satellite data:
python create_raster_stack.py --root_dir xxxx --region_name yyyy
```

File structure after the preprocessing step will be the following
(in this example Hiraan was used):
File structure after the preprocessing step has been conducted (in this example Hiraan was used):

```bash
├── Hiraan-2013-Jun-28.tif
Expand Down Expand Up @@ -158,7 +152,7 @@ python plot_RGB_img.py --full_filename /path/where/image/stack/is/stored/xxxx.ti
Example of a composite image

<p align="center">
<img src="https://github.com/unhcr/Jetson/blob/master/remote_sensing/examples/RGB-Hiraan-2018-Mar-06.png?raw=true"/>
<img src="https://github.com/unhcr/Jetson/blob/master/remote_sensing/examples/RGB-Hiraan-2018-Mar-06.png?raw=true" width="280"/>
</p>


Expand All @@ -178,11 +172,11 @@ plot_NDVI(ndvi,raster_stacked_filename)
classify_NDVI(ndvi,raster_stacked_filename) #Categorise NDVI results into useful classes
```

Examples of calculated NDVI for Hiraan
Examples of calculated NDVI for Hiraan (click image to enlarge)

<p align="center">
<img src="https://raw.githubusercontent.com/unhcr/Jetson/master/remote_sensing/examples/NDVI.png" width="275" />
<img src="https://raw.githubusercontent.com/unhcr/Jetson/master/remote_sensing/examples/NDVI-classes.png" width="275" />
<img src="https://raw.githubusercontent.com/unhcr/Jetson/master/remote_sensing/examples/NDVI.png" width="280" />
<img src="https://raw.githubusercontent.com/unhcr/Jetson/master/remote_sensing/examples/NDVI-classes.png" width="280" />
</p>


Expand All @@ -199,7 +193,7 @@ plot_VCI(vci,selected_full_filename)
classify_VCI(vci,selected_full_filename)
```

Examples of calculated VCI for Hiraan
Examples of calculated VCI for Hiraan (click image to enlarge)

<p align="center">
<img src="https://raw.githubusercontent.com/unhcr/Jetson/master/remote_sensing/examples/Hiraan-2017-Apr-20.png" width="275" />
Expand Down

0 comments on commit 5b6097d

Please sign in to comment.