Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add code from report #16

Merged
merged 13 commits into from
Apr 29, 2024
69 changes: 69 additions & 0 deletions evaluation/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# Overview
`evaluation/` contains Gobra files and scripts that can be used to
evaluate and plot, for example, the effect of using `opaque` in the
standard library or using the standard library on the execution time
and number of quantifier instantiations.

## `scripts/`
Contains scripts to
- measure execution time and the number of quantifier instantiations
and store the results in a csv file (`profile.py`)
- plot the data from one or more csv files (`plot.py`)
- profile and plot every file in `experiments/` (`profile-all.sh`)

### Dependencies and Usage
plot.py has the following dependencies:
- pandas
- numpy
- seaborn
- matplotlib
Install these packages using your favorite package manager
for Python packages (e.g., apt, pacman, nix, pip, conda, etc.).

profile.py requires the path to the following files:
- silicon.sh
- Z3 (version 4.8.7)
- Gobra jar
We have only tested Z3 4.8.7; newer versions may not work as they produce
errors and different output. Additionally, in case you get errors of
the form
```
metadata["silicon_version"] = command_stdout.splitlines()[0].split()[-1][1:-2]
~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
there may be an issue with Silicon. In this case, consider pulling Silicon's
source again, followed by building its jar.

Examples for the usage of plot.py can be found in
selected_plots/used_commands.md and profile-all.sh.
For the usage of profile.py, please take a look at its usage in
profile-all.sh. Finally, profile-all.sh contains comments describing its usage.

## `selected_plots/`
Contains plots comparing the results from different experiments.

## `experiments/`
### `program_proofs_example_10_2/`
We use the proof for `InsertCorrect` from [chapter 10.2 of Program Proofs encoded in Gobra](https://github.com/viperproject/program-proofs-gobra/blob/main/chapter10/examples_10.2.gobra)
to investigate the effect of "assisting" the verifier on execution time
and quantifier instantiations by means of intermediate assertions.

### `standard_library/`
We use parts of the standard library to investigate the effect of
making lemmas `opaque` on execution time and quantifier
instantiations.

### `synthetic_set/`
We create a synthetic example using sets that exhibits a relatively
high number of quantifier instantiations to investigate the effect of
- disabling set axiomatization and using the standard library to
manually prove all proof obligations
- "assisting" the verifier by calling lemmas from the standard library
that may be useful to prove the proof obligations

on execution time and quantifier instantiations.

Note that `fully_assisted/` is used for both types of experiments; the
difference is that in one case we disable set axiomatization by
passing the corresponding flag, while in the other case we do not.
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
qi-k!542,qi-k!553,qi-k!587,qi-k!565,qi-quant-u-8,qi-quant-u-9,qi-$Multiset[Int]_prog.card_non_negative,qi-$Multiset[Int]_prog.card_empty,qi-quant-u-27,qi-quant-u-2,qi-quant-u-26,qi-quant-u-3,qi-quant-u-0,qi-quant-u-24,qi-quant-u-1,qi-quant-u-10,qi-quant-u-11,qi-quant-u-35,qi-quant-u-34,qi-quant-u-4,qi-quant-u-28,qi-quant-u-5,qi-quant-u-43,qi-quant-u-18,qi-quant-u-42,qi-quant-u-19,qi-quant-u-33,qi-quant-u-32,qi-quant-u-41,qi-quant-u-16,qi-quant-u-40,qi-quant-u-17,qi-quant-u-6,qi-quant-u-30,qi-quant-u-7,qi-quant-u-12,qi-quant-u-36,qi-quant-u-13,qi-$Multiset[Int]_prog.count_card,qi-$Multiset[Int]_prog.singleton_unionone,qi-$Multiset[Int]_prog.card_union,qi-$Multiset[Int]_prog.count_union,qi-$Multiset[Int]_prog.card_unionone,qi-$Multiset[Int]_prog.count_singleton,qi-$Multiset[Int]_prog.count_unionone,qi-$Multiset[Int]_prog.count_empty,qi-quant-u-14,qi-quant-u-38,qi-quant-u-15,qi-$Multiset[Int]_prog.equal_count,qi-quant-u-22,qi-quant-u-45,qi-quant-u-23,qi-quant-u-44,qi-$Multiset[Int]_prog.native_equality,qi-prog.getter_over_tuple2,qi-quant-u-20,qi-quant-u-21,qi-prog.integer_ax_dec,qi-k!569,qi-k!593,qi-k!599,qi-prog.integer_ax_bound,execution_time
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.57454514503479
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.84791350364685
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.858602523803711
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.771847009658813
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.01976990699768
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.935436010360718
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.75414776802063
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.120795011520386
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.82166314125061
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.02254605293274
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.238065481185913
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.151848554611206
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.836472272872925
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.892492055892944
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.741572380065918
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.007696628570557
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.838359117507935
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.95261025428772
1,62,45,25,13,32,85,85,31,30,31,52,30,30,30,7,17,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,192,13,27,52,13,45,45,15,1,1,1,12,1,1,1,1,1,3,2,1,9,82,44,44,6,10.821515798568726
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.83070993423462
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.751307964324951
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.833659172058105
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.8695068359375
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.117118120193481
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.845272064208984
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.208571195602417
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.688027620315552
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.872260570526123
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,11.039685249328613
1,50,43,9,13,24,29,29,21,20,21,24,20,20,20,7,15,7,7,20,20,18,2,2,2,2,13,13,3,3,3,12,3,3,3,1,1,1,21,2,5,7,2,6,6,4,1,1,1,12,1,1,1,1,1,3,2,1,9,50,26,26,6,10.644623517990112
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
// This package contains the first half of the proof for InsertCorrect from
// https://github.com/viperproject/program-proofs-gobra/blob/main/chapter10/examples_10.2.gobra
package first_half

ghost
requires pq.Valid()
ensures let pqPrime := pq.Insert(y) in
pqPrime.Valid() &&
pqPrime.Elements() == pq.Elements() union mset[int]{y}
decreases len(pq)
pure func (pq PQueue) InsertCorrect(y int) Unit {
return match pq {
case Leaf{}:
Unit{}
case Node{?x, ?l, ?r}:
let pqPrime := pq.Insert(y) in
let min := y < x ? y : x in
let max := y < x ? x : y in
let newRight := r.Insert(max) in
let _ := asserting(pqPrime == Node{min, newRight, l}) in
let _ := asserting(
let L := len(l.Elements()) in
let R := len(r.Elements()) in
L == R || L == R + 1) in
r.InsertCorrect(max)
}
}

ghost
decreases len(pq)
pure func (pq PQueue) Valid() bool {
return pq.IsBinaryHeap() && pq.IsBalanced()
}

ghost
decreases len(pq)
pure func (pq PQueue) Insert(y int) PQueue {
return match pq {
case Leaf{}:
Node{y, Leaf{}, Leaf{}}
case Node{?x, ?left, ?right}:
y < x ? Node{y, right.Insert(x), left} : Node{x, right.Insert(y), left}
}
}

ghost
decreases len(pq)
pure func (pq PQueue) Elements() mset[int] {
return match pq {
case Leaf{}:
mset[int]{}
case Node{?x, ?left, ?right}:
mset[int]{x} union left.Elements() union right.Elements()
}
}

ghost
decreases len(pq)
pure func (pq PQueue) IsBalanced() (res bool) {
return match pq {
case Leaf{}:
true
case Node{_, ?left, ?right}:
left.IsBalanced() && right.IsBalanced() &&
(let L := len(left.Elements()) in
let R := len(right.Elements()) in
L == R || L == R + 1)
}
}

ghost
decreases len(pq)
pure func (pq PQueue) IsBinaryHeap() bool {
return match pq {
case Leaf{}:
true
case Node{?x, ?left, ?right}:
left.IsBinaryHeap() && right.IsBinaryHeap() &&
(left == Leaf{} || x <= left.x) &&
(right == Leaf{} || x <= right.x)
}
}


type Unit struct{}

ghost
requires b
decreases
pure func asserting(b bool) Unit {
return Unit{}
}

type PQueue = BraunTree

type BraunTree adt {
Leaf {}

Node {
x int
left BraunTree
right BraunTree
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
qi-k!601,qi-k!544,qi-k!578,qi-k!556,qi-quant-u-8,qi-quant-u-9,qi-$Multiset[Int]_prog.card_non_negative,qi-$Multiset[Int]_prog.card_empty,qi-quant-u-27,qi-quant-u-2,qi-quant-u-26,qi-quant-u-3,qi-quant-u-0,qi-quant-u-24,qi-quant-u-1,qi-quant-u-10,qi-quant-u-11,qi-quant-u-35,qi-quant-u-34,qi-quant-u-4,qi-quant-u-28,qi-quant-u-5,qi-quant-u-43,qi-quant-u-18,qi-quant-u-42,qi-quant-u-19,qi-quant-u-33,qi-quant-u-32,qi-quant-u-41,qi-quant-u-16,qi-quant-u-40,qi-quant-u-17,qi-quant-u-6,qi-quant-u-30,qi-quant-u-7,qi-quant-u-12,qi-quant-u-36,qi-quant-u-13,qi-$Multiset[Int]_prog.count_card,qi-$Multiset[Int]_prog.singleton_unionone,qi-$Multiset[Int]_prog.card_union,qi-$Multiset[Int]_prog.count_union,qi-$Multiset[Int]_prog.card_unionone,qi-$Multiset[Int]_prog.count_singleton,qi-$Multiset[Int]_prog.count_unionone,qi-$Multiset[Int]_prog.count_empty,qi-quant-u-22,qi-quant-u-45,qi-quant-u-23,qi-quant-u-44,qi-$Multiset[Int]_prog.equal_count,qi-$Multiset[Int]_prog.native_equality,qi-quant-u-14,qi-quant-u-38,qi-quant-u-15,qi-prog.getter_over_tuple2,qi-quant-u-20,qi-quant-u-21,qi-prog.integer_ax_dec,qi-k!560,qi-k!584,qi-k!590,qi-prog.integer_ax_bound,qi-quant-u-47,qi-quant-u-46,execution_time
1,73,56,17,18,41,110,110,44,43,44,53,43,43,36,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,178,17,44,69,22,57,62,35,1,1,1,1,1,1,1,1,1,3,2,1,9,80,43,43,6,1,1,11.179346323013306
1,79,58,17,18,45,118,117,50,49,50,55,49,49,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,184,18,47,68,19,60,64,39,1,1,1,1,1,1,1,1,1,3,2,1,9,76,41,41,6,1,1,11.277501106262207
1,73,56,16,18,39,104,104,44,43,44,51,43,43,36,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,155,16,41,62,16,48,50,33,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.028146505355835
1,75,56,15,18,41,112,112,46,45,46,53,45,45,36,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,174,17,44,67,18,53,56,35,1,1,1,1,1,1,1,1,1,3,2,1,9,76,41,41,6,1,1,10.955808639526367
1,73,57,15,18,41,106,106,44,43,44,51,43,43,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,168,16,42,65,17,51,53,35,1,1,1,1,1,1,1,1,1,3,2,1,9,74,40,40,6,1,1,10.909290790557861
1,73,57,17,18,41,106,106,44,43,44,51,43,43,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,171,16,42,63,18,54,57,37,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.280102014541626
1,75,58,18,18,43,112,112,46,45,46,53,45,45,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,177,17,44,67,19,56,59,37,1,1,1,1,1,1,1,1,1,3,2,1,9,80,43,43,6,1,1,10.99258542060852
1,75,57,15,18,41,108,108,46,45,46,51,45,45,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,171,16,42,65,21,55,60,35,1,1,1,1,1,1,1,1,1,3,2,1,9,74,40,40,6,1,1,11.316591262817383
1,79,58,19,18,45,120,120,50,49,50,55,49,49,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,187,18,47,71,20,59,63,39,1,1,1,1,1,1,1,1,1,3,2,1,9,81,44,44,6,1,1,11.092773675918579
1,73,57,15,18,41,106,106,44,43,44,51,43,43,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,172,16,42,65,18,54,57,37,1,1,1,1,1,1,1,1,1,3,2,1,9,74,40,40,6,1,1,10.966804027557373
1,71,56,14,18,39,102,102,42,41,42,51,41,41,36,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,156,16,41,63,19,50,54,33,1,1,1,1,1,1,1,1,1,3,2,1,9,74,40,40,6,1,1,11.277849435806274
1,79,58,17,18,45,118,118,50,49,50,55,49,49,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,184,18,47,69,19,58,62,39,1,1,1,1,1,1,1,1,1,3,2,1,9,76,42,41,6,1,1,11.119897603988647
1,73,56,17,18,41,106,106,44,43,44,51,43,43,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,167,16,42,63,17,51,53,35,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.036255598068237
1,77,56,16,18,43,118,118,48,47,48,55,47,47,36,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,184,18,47,71,19,57,59,37,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.181584358215332
1,77,58,18,18,43,112,112,48,47,48,53,47,47,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,176,17,44,67,18,56,60,37,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.176728963851929
1,77,58,16,18,43,114,114,48,47,48,53,47,47,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,178,17,44,65,19,58,62,37,1,1,1,1,1,1,1,1,1,3,2,1,9,76,41,41,6,1,1,11.077479124069214
1,75,56,17,18,41,112,112,46,45,46,53,45,45,36,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,176,17,44,69,18,53,55,35,1,1,1,1,1,1,1,1,1,3,2,1,9,80,43,43,6,1,1,11.237483501434326
1,73,56,14,18,39,104,104,44,43,44,51,43,43,36,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,155,16,41,62,16,48,50,33,1,1,1,1,1,1,1,1,1,3,2,1,9,74,40,40,6,1,1,11.1346595287323
1,75,58,18,18,43,112,112,46,45,46,53,45,45,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,180,17,45,69,19,57,60,38,1,1,1,1,1,1,1,1,1,3,2,1,9,80,43,43,6,1,1,11.248454809188843
1,73,57,18,18,43,112,112,46,45,46,53,43,43,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,184,17,45,69,23,60,66,39,1,1,1,1,1,1,1,1,1,3,2,1,9,80,43,43,6,1,1,10.912991523742676
1,77,58,17,18,45,118,118,48,47,48,55,47,47,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,186,18,47,71,20,58,61,39,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.0569589138031
1,73,56,16,18,39,103,103,44,43,44,51,43,43,36,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,155,16,41,62,16,48,50,33,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.097052335739136
1,77,58,16,18,43,114,114,48,47,48,53,47,47,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,180,17,45,67,19,57,60,39,1,1,1,1,1,1,1,1,1,3,2,1,9,76,41,41,6,1,1,10.960843324661255
1,73,57,17,18,41,106,106,44,43,44,51,43,43,35,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,172,16,42,65,18,54,57,37,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,10.877399682998657
1,73,57,16,18,43,110,110,44,43,44,53,43,43,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,181,17,45,69,22,58,63,38,1,1,1,1,1,1,1,1,1,3,2,1,9,76,41,41,6,1,1,11.189347743988037
1,77,58,17,18,45,118,118,48,47,48,55,47,47,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,189,18,48,73,20,59,62,40,1,1,1,1,1,1,1,1,1,3,2,1,9,78,42,42,6,1,1,11.10829496383667
1,77,58,18,18,47,122,122,48,47,48,57,47,47,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,200,19,50,75,26,66,73,41,1,1,1,1,1,1,1,1,1,3,2,1,9,78,43,43,6,1,1,10.972086906433105
1,87,59,34,18,51,168,168,56,55,56,81,55,55,45,9,24,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,352,28,67,114,30,95,98,50,1,1,1,1,1,1,1,1,1,3,2,1,9,112,61,61,6,1,1,11.038999795913696
1,75,56,18,18,43,116,116,46,45,46,55,45,45,36,9,22,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,190,18,47,73,24,61,67,37,1,1,1,1,1,1,1,1,1,3,2,1,9,82,44,44,6,1,1,10.882302045822144
1,79,58,17,18,45,118,118,50,49,50,55,49,49,35,9,18,10,10,27,27,23,3,5,5,5,20,20,3,3,3,12,3,3,3,1,1,1,182,18,47,69,19,58,62,39,1,1,1,1,1,1,1,1,1,3,2,1,9,76,41,41,6,1,1,10.89523458480835
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Loading