Skip to content

vivoutlaw/tcbp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Multimodal Feature Encoding for Video Ordering

Vivek Sharma, Makarand Tapaswi, and Rainer Stiefelhagen

In IEEE International Conference on Computer Vision (ICCV) workshop on Large Scale Holistic Video Understanding, 2019

Temporal Compact Bilinear Pooling (TCBP) Layer

Demo:

$ from TCBP import TCBP
$ import torch
$ data = torch.rand([10,8192,4,1,1]) 
$ tcbp = TCBP(input_dim1=8192, input_dim2=8192,output_dim=512, temporal_window=4, spat_x=1, spat_y=1)
$ tcbp_representation = tcbp(data,data)
$ tcbp_representation.shape  
$ ---> torch.Size([10, 512])

Citation

If you find the code and datasets useful in your research, please cite:

@inproceedings{tcbp,
    author    = {Sharma, Vivek and Tapaswi, Makarand and Stiefelhagen, Rainer}, 
    title     = {Deep Multimodal Feature Encoding for Video Ordering}, 
    booktitle = {IEEE ICCV Workshop on Large Scale Holistic Video Understanding},
    year      = {2019}
}

About

Temporal Compact Bilinear Pooling (TCBP)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages