Skip to content

Commit

Permalink
add asymmetric tiling
Browse files Browse the repository at this point in the history
Signed-off-by: Vladimir Mandic <[email protected]>
  • Loading branch information
vladmandic committed Feb 6, 2025
1 parent 959f9e2 commit 47b4848
Show file tree
Hide file tree
Showing 2 changed files with 112 additions and 0 deletions.
8 changes: 8 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,13 @@
# Change Log for SD.Next

## Update for 2025-02-06

- **Other**:
- asymmetric tiling
allows for configurable image tiling for x/y axis separately
enable in *scripts -> asymmetric tiling*
*note*: traditional symmetric tiling is achieved by setting circular mode for both x and y

## Update for 2025-02-05

- refresh dev/master branches
Expand Down
104 changes: 104 additions & 0 deletions scripts/tiling.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
from typing import Optional
import torch
import gradio as gr
from PIL import Image
from diffusers.models.lora import LoRACompatibleConv
from torch import Tensor
from torch.nn import functional as F
from torch.nn.modules.utils import _pair
from modules import scripts, processing, shared


modex = 'constant'
modey = 'constant'


def asymmetricConv2DConvForward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): # pylint: disable=redefined-builtin
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0) # pylint: disable=protected-access
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3]) # pylint: disable=protected-access
working = F.pad(input, self.paddingX, mode=modex)
working = F.pad(working, self.paddingY, mode=modex)
return F.conv2d(working, weight, bias, self.stride, _pair(0), self.dilation, self.groups)


class Script(scripts.Script):
def __init__(self):
super().__init__()
self.orig_pipe = None
self.conv_layers = []
self.modes = ['constant', 'circular', 'reflect', 'replicate']

def title(self):
return 'Asymmetric Tiling'

def show(self, is_img2img):
return shared.native

def ui(self, _is_img2img): # ui elements
with gr.Row():
gr.HTML('<b>Asymmetric Tiling</b><br>')
with gr.Row():
tilex = gr.Dropdown(label="Mode x-axis", choices=self.modes, value='constant')
numx = gr.Slider(label="Repeat x-axis", value=1, minimum=1, maximum=10, step=1)
with gr.Row():
tiley = gr.Dropdown(label="Mode y-axis", choices=self.modes, value='constant')
numy = gr.Slider(label="Repeat y-axis", value=1, minimum=1, maximum=10, step=1)
return [tilex, numx, tiley, numy]

def run(self, p: processing.StableDiffusionProcessing, tilex:bool=False, numx:int=1, tiley:bool=False, numy:int=1): # pylint: disable=arguments-differ, unused-argument
global modex, modey # pylint: disable=global-statement
supported_model_list = ['sd', 'sdxl']
if shared.sd_model_type not in supported_model_list:
shared.log.warning(f'Tiling: class={shared.sd_model.__class__.__name__} model={shared.sd_model_type} required={supported_model_list}')
return None
if not tilex and not tiley:
return None
self.orig_pipe = shared.sd_model

modex = tilex
modey = tiley
self.conv_layers.clear()
targets = [shared.sd_model.vae, shared.sd_model.text_encoder, shared.sd_model.unet]
for target in targets:
for module in target.modules():
if isinstance(module, torch.nn.Conv2d):
self.conv_layers.append(module)

for cl in self.conv_layers:
if isinstance(cl, LoRACompatibleConv) and cl.lora_layer is None:
cl.lora_layer = lambda *x: 0
if hasattr(cl, '_conv_forward'):
cl._orig_conv_forward = cl._conv_forward # pylint: disable=protected-access
cl._conv_forward = asymmetricConv2DConvForward.__get__(cl, torch.nn.Conv2d) # pylint: disable=protected-access, no-value-for-parameter
shared.log.info(f'Tiling: x={tilex}:{numx} y={tiley}:{numy}')


def after(self, p: processing.StableDiffusionProcessing, processed: processing.Processed, tilex:bool=False, numx:int=1, tiley:bool=False, numy:int=1): # pylint: disable=arguments-differ, unused-argument
if len(self.conv_layers) == 0:
return processed
for cl in self.conv_layers:
if hasattr(cl, '_orig_conv_forward'):
cl._conv_forward = cl._orig_conv_forward # pylint: disable=protected-access
if self.orig_pipe is None:
return processed
if shared.sd_model_type == "sdxl":
shared.sd_model = self.orig_pipe
self.orig_pipe = None
self.conv_layers.clear()
if not hasattr(processed, 'images') or processed.images is None:
return processed
images = []
for image in processed.images:
if tilex and isinstance(image, Image.Image):
tiled = Image.new('RGB', (image.width * numx, image.height), (0, 0, 0))
for i in range(numx):
tiled.paste(image, (i * image.width, 0))
image = tiled
if tiley and isinstance(image, Image.Image):
tiled = Image.new('RGB', (image.width, image.height * numy), (0, 0, 0))
for i in range(numy):
tiled.paste(image, (0, i * image.height))
image = tiled
images.append(image)
processed.images = images
return processed

0 comments on commit 47b4848

Please sign in to comment.