forked from nazikus/dalcim
-
Notifications
You must be signed in to change notification settings - Fork 0
Testing multi-class cosegmentation http://www.di.ens.fr/~joulin/index?page=coseg
License
wangsff/dalcim
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This is the code for: -Discriminative Clustering for Image Co-segmentation Armand Joulin, Francis Bach and Jean Ponce. CVPR, 2010. -Multi-Class Cosegmentation Armand Joulin, Francis Bach and Jean Ponce. CVPR, 2012. Please these papers if you use this code (bibtex below). REQUIREMENTS: You need the vlfeat image toolbox by Andrea Vedaldi and Brian Fulkerson: http://www.vlfeat.org/ You need Mark Schmidt's optimization toolbox: http://www.di.ens.fr/~mschmidt/Software/minFunc.html INSTALL: run mexAll.m in MATLAB to compile all mex files RUN IT: There are three examples: -coseg_example.m : classical coseg example -multicoseg_example.m : multiclass coseg example -grabcut_example.m : grabcut example on single image (note that you can use it on multiple images) IMPORT OPTIONS: param.onlyDiffrac : To run the cvpr'10 alone param.initDiffac : Initialize the cvpr'12 cod by the cvpr'10 one param.useMask : to use boundingboxes (i.e. grabcut) typeFeat : either 'color' or 'sift' typeKernel : either 'chi2' or 'Hellsinger' CONTACT: Please if you have questions or problems, contact: armand.joulin at gmail.com BIBTEX: @InProceedings{JouBacPon12, title = "Multi-Class Cosegmentation", booktitle = "Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)", author = "A. Joulin and F. Bach and J. Ponce", year = "2012" } @InProceedings{JouBacPonc10_cvpr, title = "Discriminative Clustering for Image Co-segmentation", booktitle = "Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)", author = "A. Joulin and F. Bach and J. Ponce", year = "2010" }
About
Testing multi-class cosegmentation http://www.di.ens.fr/~joulin/index?page=coseg
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- MATLAB 87.4%
- C 7.8%
- C++ 4.8%