Skip to content

Commit

Permalink
SWE
Browse files Browse the repository at this point in the history
  • Loading branch information
milancurcic committed Oct 7, 2024
1 parent 4b5f714 commit 56e346c
Show file tree
Hide file tree
Showing 2 changed files with 249 additions and 4 deletions.
Binary file added assets/fig_swe_dispersion.pdf
Binary file not shown.
253 changes: 249 additions & 4 deletions notes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2627,7 +2627,7 @@ \subsection{Key assumptions}
\label{fig:shallow_water1}
\end{figure}

\subsection{The shallow water equations}
\subsection{Shallow water equations}

The shallow water equations consist of the momentum and the continuity
equations.
Expand Down Expand Up @@ -2737,10 +2737,237 @@ \subsubsection{Continuity equation}
\label{eq:shallow_water_continuity3}
\end{equation}

\subsection{General solutions}
Alternatively, we can derive the shallow water continuity from the incompressibility
of the flow:

\subsection{Exercises}
\begin{equation}
\nabla \cdot \mathbf{u} =
\frac{\partial u}{\partial x} +
\frac{\partial v}{\partial y} +
\frac{\partial w}{\partial z} = 0
\end{equation}

\begin{equation}
\frac{\partial w}{\partial z} \approx \frac{w_\eta - w_b}{h} = - \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}
\end{equation}
where $w_\eta$ and $w_b$ are the vertical velocities at the free surface and the
rigid bottom surface, respectively, and $h$ is, again, the distance of the free
surface from the bottom.
$w_b$ must be zero, of course, and $w_\eta = \partial \eta / \partial t$,
so we get:

\begin{equation}
\frac{d \eta}{dt} + h \nabla \cdot \mathbf{u} = 0
\end{equation}
which is the Lagrangian form of the shallow water continuity and the same
equation as Eq. \ref{eq:shallow_water_continuity3}.
To get the Eulerian form from here, we first need to recognize that
$d\eta/dt = dh/dt$ because $h = \overline{h} + \eta$, where $\overline{h}$ is the
mean water depth.
Then, expanding the Lagrangian derivative, we recover Eq.
\ref{eq:shallow_water_continuity2}.

\subsubsection{The complete equation set}

The momentum and continuity equations that we derived above form the complete
set of shallow water equations.
In vector form, they are:

\begin{equation}
\frac{d \mathbf{u}}{dt} + \mathbf{f} \times \mathbf{u} =
g \nabla \eta
\label{eq:shallow_water_final_momentum}
\end{equation}

\begin{equation}
\frac{\partial \eta}{\partial t} + \nabla \cdot (h \mathbf{u}) = 0
\label{eq:shallow_water_final_continuity}
\end{equation}

And in scalar form, in two dimensions:

\begin{equation}
\frac{\partial u}{\partial t} +
u \frac{\partial u}{\partial x} +
v \frac{\partial u}{\partial y} -
f v =
-g \frac{\partial \eta}{\partial x}
\label{eq:shallow_water_final_scalar_u}
\end{equation}

\begin{equation}
\frac{\partial v}{\partial t} +
u \frac{\partial v}{\partial x} +
v \frac{\partial v}{\partial y} +
f u =
-g \frac{\partial \eta}{\partial y}
\label{eq:shallow_water_final_scalar_v}
\end{equation}

\begin{equation}
\frac{\partial \eta}{\partial t} +
\frac{\partial (hu)}{\partial x} +
\frac{\partial (hv)}{\partial y} = 0
\label{eq:shallow_water_final_scalar_eta}
\end{equation}
which closes our system of equations.
In two dimensions, we thus have three equations for the three unknown
variables $u$, $v$, and $\eta$.
The flow is inviscid (no friction) but nonlinear (advective term
$\mathbf{u} \cdot \nabla \mathbf{u}$ is present), so this system of equations
allows for turbulence but does not dissipate energy.
Also, notice that the Coriolis force is present but has seamlessly percolated
from the starting equation without breaking any of the assumptions.
Thus, to consider shallow water systems in a non-rotating frame, simply drop
the Coriolis term.

We now proceed to further simplify this equation set to derive a general
solution for the shallow water equations.

\subsection{General solution}

As we proceed without our intention to derive a solution to the
equations (\ref{eq:shallow_water_final_scalar_u}-\ref{eq:shallow_water_final_scalar_eta}),
notice that the nonlinear terms get in the way of an analytical solution.
To work around this, we will linearize the equations by decomposing the flow
into a mean and a perturbation:

\begin{equation}
h(x, y, t) = H + \eta'(x, y, t)
\end{equation}

\begin{equation}
\mathbf{u}(x, y, t) = \mathbf{U} + \mathbf{u}'(x, y, t)
\end{equation}
and since the mean flow in space and time does not vary, and it is by definition
zero for the fluid at rest, then the velocity field is equal to its perturbation:

\begin{equation}
\mathbf{u}(x, y, t) = \mathbf{u}'(x, y, t)
\end{equation}

Insert these decompositions Eqs. (\ref{eq:shallow_water_final_momentum})
and (\ref{eq:shallow_water_final_continuity}) to get:

\begin{equation}
\frac{\partial \mathbf{u}'}{\partial t} +
\mathbf{u}' \cdot \nabla \mathbf{u}' +
\mathbf{f} \times \mathbf{u}' =
- g \nabla \left( H + \eta' \right)
\end{equation}

\begin{equation}
\frac{\partial \eta'}{\partial t} + \nabla \cdot \left[ (H + \eta') \mathbf{u}' \right] = 0
\end{equation}
Although we do not (and cannot) require that the perturbations on their own
are small enough to neglect, the products of two perturbations are assumed to
be.
This allows us to linearize the equations and obtain:

\begin{equation}
\frac{\partial \mathbf{u}'}{\partial t} +
\mathbf{f} \times \mathbf{u}' +
g \nabla \eta' = 0
\end{equation}

\begin{equation}
\frac{\partial \eta'}{\partial t} + H \nabla \cdot \mathbf{u}' = 0
\end{equation}
Or, in scalar form:

\begin{equation}
\frac{\partial u'}{\partial t} - f v' + g \frac{\partial \eta'}{\partial x} = 0
\label{eq:swe_linear_u}
\end{equation}

\begin{equation}
\frac{\partial v'}{\partial t} + f u' + g \frac{\partial \eta'}{\partial y} = 0
\label{eq:swe_linear_v}
\end{equation}

\begin{equation}
\frac{\partial \eta'}{\partial t} + H \frac{\partial u'}{\partial x} + H \frac{\partial v'}{\partial y} = 0
\label{eq:swe_linear_eta}
\end{equation}

Assume the general solution to have a wave-like form:

\begin{equation}
(u, v, \eta) = (\widehat{u}, \widehat{v}, \widehat{\eta}) e^{i(kx + ly - \omega t)}
\end{equation}
where $\widehat{u}$, $\widehat{v}$, and $\widehat{\eta}$ are the amplitudes of the
wave-like perturbations, $k$ and $l$ are the wavenumbers, and $\omega$ is the
angular frequency.
Insert the wave form into Eqs. (\ref{eq:swe_linear_u}-\ref{eq:swe_linear_eta})
to get:

\begin{equation}
- i \omega \widehat{u} - f \widehat{v} + i g k \widehat{\eta} = 0
\end{equation}

\begin{equation}
- i \omega \widehat{v} + f \widehat{u} + i g l \widehat{\eta} = 0
\end{equation}

\begin{equation}
- i \omega \widehat{\eta} + i H k \widehat{u} + i H l \widehat{v} = 0
\end{equation}
or, in matrix form:

\begin{equation}
\begin{bmatrix}
- i \omega & - f & i g k \\
f & - i \omega & i g l \\
i H k & i H l & - i \omega
\end{bmatrix}
\begin{bmatrix}
\widehat{u} \\
\widehat{v} \\
\widehat{\eta}
\end{bmatrix} = 0
\end{equation}
The solution to this system requires that the determinant of the matrix be zero,
which yields:

\begin{equation}
\omega[\omega^2 - f^2 - gH(k^2 + l^2)] = 0
\label{eq:swe_determinant}
\end{equation}
A trivial solution to this equation is $\omega = 0$, which corresponds to an
unperturbed, constant flow.
The other, non-trivial solution is the dispersion relation for shallow water
gravity waves in a rotating frame:

\begin{equation}
\omega = \sqrt{f^2 + gH(k^2 + l^2)}
\label{eq:swe_dispersion}
\end{equation}
This dispersion relationship connects the frequency to the wavenumber, and we
see that it scales with the Coriolis frequency $f$ and the gravity wave
phase speed $\sqrt{gH}$.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{assets/fig_swe_dispersion.pdf}
\caption{
Dispersion relation for Poincaré waves and non-rotating shallow water
waves.
Frequency is scaled by the Coriolis frequency $f$, and wavenumber by the
inverse deformation radius $\sqrt{gH}/f$.
For small wavenumbers the frequency of the Poincaré waves is approximately
$f$, and for high wavenumbers is asymptotes to that of non-rotating waves.
This is Fig. 3.8 in AOFD (Vallis, 2017).
}
\label{fig:swe_dispersion}
\end{figure}

%\subsection{Exercises}

\subsection*{Further reading}

\begin{itemize}
\item Chapter 4 of EAOD by Vallis.
\end{itemize}

\newpage
\appendix
Expand Down Expand Up @@ -3001,7 +3228,7 @@ \section{Quick reference}
\textbf{Potential density:}

\begin{equation}
\rho_\theta = \rho + \frac{\rho0 g z}{c_s^2}
\rho_\theta = \rho + \frac{p_0 g z}{c_s^2}
\end{equation}

\textbf{Brunt-Väisälä (buoyancy) frequency:}
Expand All @@ -3020,6 +3247,24 @@ \section{Quick reference}
\frac{\partial \widetilde{\rho}_\theta}{\partial z} > 0 \quad \text{(unstable)}
\end{equation}

\textbf{Shallow water momentum equation:}

\begin{equation}
\frac{d \mathbf{u}}{dt} + \mathbf{f} \times \mathbf{u} = - g \nabla \eta
\end{equation}

\textbf{Shallow water continuity equation:}

\begin{equation}
\frac{\partial \eta}{\partial t} + \nabla \cdot (h \mathbf{u}) = 0
\end{equation}

\textbf{Shallow water dispersion relation:}

\begin{equation}
\omega = \sqrt{f^2 + gH(k^2 + l^2)}
\end{equation}

\printindex

\end{document}

0 comments on commit 56e346c

Please sign in to comment.