Skip to content

Commit

Permalink
TKE budget
Browse files Browse the repository at this point in the history
  • Loading branch information
milancurcic committed Oct 30, 2024
1 parent f0b5660 commit 8a0bbff
Showing 1 changed file with 173 additions and 1 deletion.
174 changes: 173 additions & 1 deletion notes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -3801,7 +3801,7 @@ \subsection{Reynolds stress}

\begin{equation}
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} =
\frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} + \frac{\mathbf{F}_b}{\rho}
\frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma}
\end{equation}
and the associated stress tensor (Eq. \ref{eq:stress_tensor_decomposition}):

Expand Down Expand Up @@ -3880,6 +3880,8 @@ \subsection{Reynolds stress}
\begin{equation}
k = \frac{1}{2} \left( \overline{u'u'} + \overline{v'v'} + \overline{w'w'} \right)
\end{equation}
From the point of view of the Reynolds decomposition into the mean and
fluctuations from the mean, TKE is the sum of velocity variances.
TKE plays an important role in parameterizing the subgrid-scale turbulent
processes in the boundary layer components of weather and ocean prediction
models.
Expand Down Expand Up @@ -3935,6 +3937,176 @@ \subsection{Reynolds stress}

\subsection{Turbulent kinetic energy budget}

Turbulent kinetic energy (TKE) is a fundamental quantity in the study of
turbulence.
It's a prognostic variable in many subgrid-scale parametric models of
atmospheric and oceanic boundary layers.
Here we derive the prognostic equation for TKE from the fundamental equations
with Reynolds decomposition, often referred to as the TKE budget equation.

The derivation of the TKE budget equation involves the following steps:

\begin{enumerate}
\item Start from the Navier-Stokes equation (Eq. \ref{eq:ns_reynolds1})
and apply the Reynolds decomposition to the velocity field.
\item Subtract the RANS equation from the original Navier-Stokes equation
with Reynolds decomposition to obtain the equation for the velocity
fluctuations.
\item Multiply the equation for the velocity fluctuations by the fluctuating
velocity components and time-average to obtain the equation for the TKE.
\end{enumerate}

For completeness, we will also consider the buoyancy term that we derived in
the Boussinesq approximation, as it will turn out that this term plays a role
in the TKE budget.
We start from the Navier-Stokes equation but in the advective (non-conservative)
form, rather than the flux (conservative) form, as the advective form makes the
TKE budget derivation more straightforward (they are equivalent for
incompressible flows, $\nabla \cdot \mathbf{u} = 0$).

\begin{equation}
\frac{\partial \mathbf{u}}{\partial t} +
(\mathbf{u} \cdot \nabla) \mathbf{u} =
- \frac{1}{\rho} \nabla p
+ \frac{\delta \rho}{\rho} \mathbf{g}
+ \nu \nabla^2 \mathbf{u}
\end{equation}
Apply the Reynolds decomposition to $\mathbf{u}$, $p$, and $\delta \rho$ to get:

\begin{equation}
\begin{split}
\frac{\partial \overline{\mathbf{u}}}{\partial t} + \frac{\partial \mathbf{u}'}{\partial t} +
(\overline{\mathbf{u}} \cdot \nabla) \overline{\mathbf{u}} +
(\mathbf{u}' \cdot \nabla) \overline{\mathbf{u}} +
(\overline{\mathbf{u}} \cdot \nabla) \mathbf{u}' +
(\mathbf{u}' \cdot \nabla) \mathbf{u}' = \\
- \frac{1}{\rho} \nabla \overline{p}
- \frac{1}{\rho} \nabla p'
+ \frac{\overline{\delta \rho}}{\rho} \mathbf{g}
+ \frac{\delta \rho'}{\rho} \mathbf{g}'
+ \nu \nabla^2 \overline{\mathbf{u}}
+ \nu \nabla^2 \mathbf{u}'
\end{split}
\label{eq:tke_budget_ns}
\end{equation}
The RANS equation in the advective form is:

\begin{equation}
\frac{\partial \overline{\mathbf{u}}}{\partial t} +
(\overline{\mathbf{u}} \cdot \nabla) \overline{\mathbf{u}} +
\overline{(\mathbf{u}' \cdot \nabla) \mathbf{u}'} = \\
- \frac{1}{\rho} \nabla \overline{p}
+ \frac{\overline{\delta \rho}}{\rho} \mathbf{g}
+ \nu \nabla^2 \overline{\mathbf{u}}
\label{eq:tke_budget_rans}
\end{equation}
Subtract Eq. (\ref{eq:tke_budget_rans}) from Eq. (\ref{eq:tke_budget_ns}) to
obtain the equation for the velocity fluctuations:

\begin{equation}
\frac{\partial \mathbf{u}'}{\partial t} +
(\mathbf{u}' \cdot \nabla) \overline{\mathbf{u}} +
(\overline{\mathbf{u}} \cdot \nabla) \mathbf{u}' +
(\mathbf{u}' \cdot \nabla) \mathbf{u}' -
\overline{(\mathbf{u}' \cdot \nabla) \mathbf{u}'} = \\
- \frac{1}{\rho} \nabla p'
+ \frac{\delta \rho'}{\rho} \mathbf{g}
+ \nu \nabla^2 \mathbf{u}'
\end{equation}
Multiply by $\mathbf{u}'$ to get:

\begin{equation}
\mathbf{u}'\frac{\partial \mathbf{u}'}{\partial t} +
\mathbf{u}' (\mathbf{u}' \cdot \nabla) \overline{\mathbf{u}} +
\mathbf{u}' (\overline{\mathbf{u}} \cdot \nabla) \mathbf{u}' +
\mathbf{u}' (\mathbf{u}' \cdot \nabla) \mathbf{u}' -
\mathbf{u}' \overline{(\mathbf{u}' \cdot \nabla) \mathbf{u}'} = \\
- \frac{1}{\rho} \mathbf{u}' \nabla p'
+ \frac{\delta \rho'}{\rho} \mathbf{u}' \mathbf{g}
+ \nu \mathbf{u}' \nabla^2 \mathbf{u}'
\end{equation}
Rearrange the terms:

\begin{equation}
\begin{split}
\frac{\partial}{\partial t} \left( \frac{\mathbf{u}'^2}{2} \right) +
(\overline{\mathbf{u}} \cdot \nabla) \left( \frac{\mathbf{u}'^2}{2} \right) +
(\mathbf{u}' \mathbf{u}' \cdot \nabla) \overline{\mathbf{u}} +
\frac{1}{2} \nabla \cdot (\mathbf{u}' \mathbf{u}' \mathbf{u}') -
\mathbf{u}' \overline{(\mathbf{u}' \cdot \nabla) \mathbf{u}'} = \\
- \frac{1}{\rho} \mathbf{u}' \nabla p'
+ \frac{\delta \rho'}{\rho} \mathbf{u}' \cdot \mathbf{g}
+ \nu \mathbf{u}' \nabla^2 \mathbf{u}'
\end{split}
\end{equation}
Finally, time-average to get the TKE budget equation, noting that the last term
on the left-hand side drops out due to time-averaging, and that
$k \equiv \frac{1}{2} \overline{\mathbf{u}'^2}$:

\begin{equation}
\frac{\partial k}{\partial t} + \overline{\mathbf{u}} \cdot \nabla k =
- \frac{1}{2} \nabla \cdot (\overline{\mathbf{u}' \mathbf{u}' \mathbf{u}'})
- (\mathbf{u}' \mathbf{u}' \cdot \nabla) \overline{\mathbf{u}}
- \frac{1}{\rho} \overline{\mathbf{u}' \nabla p'}
+ \overline{\frac{\delta \rho'}{\rho} \mathbf{u}' \cdot \mathbf{g}}
+ \nu \overline{\mathbf{u}' \nabla^2 \mathbf{u}'}
\label{eq:tke_budget_near_final}
\end{equation}
So far we broke down the advective term from the original Navier-Stokes equation
to produce three new terms.
We're still left with the viscous term, which can be rearranged into two terms
for a more intuitive physical interpretation.
Here we'll use the following identity to expand the Laplacian:

\begin{equation}
\overline{\nu \mathbf{u}' \nabla^2 \mathbf{u}'} =
\nu \nabla \cdot (\overline{\mathbf{u}' \nabla \mathbf{u}'}) -
\nu \overline{\nabla \mathbf{u}' \cdot \nabla \mathbf{u}'} =
\nu \nabla^2 k - \nu \overline{(\nabla \mathbf{u}' \cdot \nabla \mathbf{u}')}
\label{eq:tke_budget_viscous}
\end{equation}
Inserting Eq. (\ref{eq:tke_budget_viscous}) into Eq. (\ref{eq:tke_budget_near_final})
gives us our final form of the TKE budget equation:

\begin{equation}
\frac{\partial k}{\partial t} + \overline{\mathbf{u}} \cdot \nabla k =
- \frac{1}{2} \nabla \cdot (\overline{\mathbf{u}' \mathbf{u}' \mathbf{u}'})
- (\mathbf{u}' \mathbf{u}' \cdot \nabla) \overline{\mathbf{u}}
- \frac{1}{\rho} \overline{\mathbf{u}' \nabla p'}
+ \overline{\frac{\delta \rho'}{\rho} \mathbf{u}' \cdot \mathbf{g}}
+ \nu \nabla^2 k
- \nu \overline{\nabla \mathbf{u}' \cdot \nabla \mathbf{u}'}
\label{eq:tke_budget_final}
\end{equation}
Let's look at each term in Eq. (\ref{eq:tke_budget_final}) and discuss its
physical meaning:

\begin{itemize}
\item $\frac{\partial k}{\partial t}$: Eulerian rate of change of TKE in
a fixed point in space.
\item $\overline{\mathbf{u}} \cdot \nabla k$: Advection of TKE by the mean
flow. Like any other fluid property, TKE as well is subject to advection by
the mean flow, \textit{i.e.} $dk/dt = \partial k/\partial t + \overline{\mathbf{u}} \cdot \nabla k$.
\item $-\frac{1}{2} \nabla \cdot (\overline{\mathbf{u}' \mathbf{u}' \mathbf{u}'})$
is the turbulent transport of TKE. In other words, this term quantifies how
much turbulent eddies are transported by the turbulent eddies themselves.
\item $-(\mathbf{u}' \mathbf{u}' \cdot \nabla) \overline{\mathbf{u}}$ is the
production of TKE by the mean flow.
\item $-\frac{1}{\rho} \overline{\mathbf{u}' \nabla p'}$ is the
production of TKE by the turbulent fluctuations of the pressure gradient.
\item $\overline{\frac{\delta \rho'}{\rho} \mathbf{u}' \cdot \mathbf{g}}$
is the production of TKE by buoyancy. Notice the dot product between the
velocity vector and the gravitational acceleration, which means that the
buoyancy production occurs only by the vertical velocity component, and is
scaled by the buoyancy anomaly $\delta \rho'$. The stronger the stratification
of the fluid, the larger the buoyancy production of TKE.
\item $\nu \nabla^2 k$ is the dissipation of TKE by molecular diffusion.
\item $-\nu \overline{\nabla \mathbf{u}' \cdot \nabla \mathbf{u}'}$ is the
turbulent eddy dissipation of TKE. Note that $\nabla \mathbf{u}'$ are rank-2
tensors, so the inner product $\nabla \mathbf{u}' \cdot \nabla \mathbf{u}'$
is a rank-4 tensor, which is averaged to get a scalar.
\end{itemize}

\subsection{Turbulent cascade}

\newpage
Expand Down

0 comments on commit 8a0bbff

Please sign in to comment.