Skip to content

Commit

Permalink
mult prompts
Browse files Browse the repository at this point in the history
  • Loading branch information
wrs225 committed Mar 13, 2024
1 parent 89130d5 commit 57aaf49
Show file tree
Hide file tree
Showing 6 changed files with 446 additions and 0 deletions.
72 changes: 72 additions & 0 deletions data_collection_scripts/FP_Multiplier/prompt_27.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@

Actually, you should just be checking if a_exponent + b_exponent are equal to zero, not the sign of y_exponent_temp
ChatGPT

I see, my apologies for misunderstanding. We should indeed check if the sum of a_exponent and b_exponent is zero to handle the subnormal case. Here's the corrected code:

systemverilog

module fp_multiplier(
input logic [31:0] a, // input a
input logic [31:0] b, // input b
output logic [31:0] y // output y
);
logic [7:0] a_exponent, b_exponent, y_exponent_temp, y_exponent;
logic [23:0] a_mantissa, b_mantissa;
logic [47:0] mult_result;
logic [22:0] y_mantissa_temp, y_mantissa;
logic a_sign, b_sign, y_sign;
logic sticky_bit;
logic r;

// Extract the sign, exponent, and mantissa from the inputs
assign a_sign = a[31];
assign a_exponent = a[30:23];
assign a_mantissa = {1'b1, a[22:0]};

assign b_sign = b[31];
assign b_exponent = b[30:23];
assign b_mantissa = {1'b1, b[22:0]};

// Perform the multiplication
assign y_sign = a_sign ^ b_sign;
assign mult_result = a_mantissa * b_mantissa;
assign y_exponent_temp = a_exponent + b_exponent - 127 + mult_result[47];
assign y_mantissa_temp = mult_result[47] ? mult_result[46:24] : mult_result[45:23];
assign sticky_bit = mult_result[47] ? |mult_result[22:0] : |mult_result[21:0];
assign r = mult_result[47] ? mult_result[23] : mult_result[22];

// Check for infinities and NaNs
always_comb begin
if ((a_exponent == 8'hFF && a_mantissa[22:0] != 0) || (b_exponent == 8'hFF && b_mantissa[22:0] != 0)) begin
// a or b is NaN, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if ((a == 32'b0 && b_exponent == 8'hFF && b_mantissa[22:0] == 0) || (b == 32'b0 && a_exponent == 8'hFF && a_mantissa[22:0] == 0)) begin
// a is zero and b is infinity, or b is zero and a is infinity, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if (a == 32'b0 || b == 32'b0) begin
// If either input is zero, output is zero
y_exponent = 8'h00;
y_mantissa = 23'h0;
end else if ((a_exponent == 8'hFF && a_mantissa[22:0] == 0) && (b_exponent == 8'hFF && b_mantissa[22:0] == 0)) begin
// a is infinity and b is infinity, result is infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if (a_exponent + b_exponent == 0) begin
// Subnormal case
y_exponent = 0;
y_mantissa = y_mantissa_temp >> -y_exponent_temp;
end else begin
// Normal case
y_exponent = y_exponent_temp;
y_mantissa = y_mantissa_temp + (r & sticky_bit); // Add rounding
end
end

// Combine the sign, exponent, and mantissa into the output
assign y = {y_sign, y_exponent, y_mantissa};
endmodule

In this version, I've replaced the check y_exponent_temp[7] with a_exponent + b_exponent == 0 to correctly handle the subnormal case. This checks if the sum of a_exponent and b_exponent is zero.
Empty file.
143 changes: 143 additions & 0 deletions data_collection_scripts/FP_Multiplier/prompt_29.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@

I have the following verilog module for an IEEE 754 single-precision floating point multiplier:
module fp_multiplier(
input logic [31:0] a, // input a
input logic [31:0] b, // input b
output logic [31:0] y // output y
);
logic [7:0] a_exponent, b_exponent, y_exponent_temp, y_exponent;
logic [23:0] a_mantissa, b_mantissa;
logic [47:0] mult_result;
logic [22:0] y_mantissa_temp, y_mantissa;
logic a_sign, b_sign, y_sign;
logic sticky_bit;
logic r;

// Extract the sign, exponent, and mantissa from the inputs
assign a_sign = a[31];
assign a_exponent = a[30:23];
assign a_mantissa = {1'b1, a[22:0]};

assign b_sign = b[31];
assign b_exponent = b[30:23];
assign b_mantissa = {1'b1, b[22:0]};

// Perform the multiplication
assign y_sign = a_sign ^ b_sign;
assign mult_result = a_mantissa * b_mantissa;
assign y_exponent_temp = a_exponent + b_exponent - 127 + mult_result[47];
assign y_mantissa_temp = mult_result[47] ? mult_result[46:24] : mult_result[45:23];
assign sticky_bit = mult_result[47] ? |mult_result[22:0] : |mult_result[21:0];
assign r = mult_result[47] ? mult_result[23] : mult_result[22];

// Check for infinities and NaNs
always_comb begin
if ((a_exponent == 8'hFF && a_mantissa[22:0] != 0) || (b_exponent == 8'hFF && b_mantissa[22:0] != 0)) begin
// a or b is NaN, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if ((a == 32'b0 && b_exponent == 8'hFF && b_mantissa[22:0] == 0) || (b == 32'b0 && a_exponent == 8'hFF && a_mantissa[22:0] == 0)) begin
// a is zero and b is infinity, or b is zero and a is infinity, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if (a == 32'b0 || b == 32'b0) begin
// If either input is zero, output is zero
y_exponent = 8'h00;
y_mantissa = 23'h0;
end else if ((a_exponent == 8'hFF && a_mantissa[22:0] == 0) && (b_exponent == 8'hFF && b_mantissa[22:0] == 0)) begin
// a is infinity and b is infinity, result is infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if (a_exponent + b_exponent == 0) begin
// Subnormal case
y_exponent = 0;
y_mantissa = y_mantissa_temp >> -y_exponent_temp;
end else begin
// Normal case
y_exponent = y_exponent_temp;
y_mantissa = y_mantissa_temp + (r & sticky_bit); // Add rounding
end
end

// Combine the sign, exponent, and mantissa into the output
assign y = {y_sign, y_exponent, y_mantissa};
endmodule
Please fix this code to return infinity in the case of overflow. Currently, it is incorrectly outputting zero
ChatGPT
Your Verilog code handles the corner cases of IEEE 754 floating point multiplication quite well, however, it doesn't appear to have an overflow condition check. In IEEE 754, if the exponent of the result of a multiplication is too large, the value should be set to infinity. Here is a fix for your code, which includes an overflow condition check and correct output for the overflow:

verilog
Copy code
module fp_multiplier(
input logic [31:0] a, // input a
input logic [31:0] b, // input b
output logic [31:0] y // output y
);
logic [8:0] a_exponent, b_exponent, y_exponent_temp; // changed size to [8:0] to prevent overflow
logic [7:0] y_exponent;
logic [23:0] a_mantissa, b_mantissa;
logic [47:0] mult_result;
logic [22:0] y_mantissa_temp, y_mantissa;
logic a_sign, b_sign, y_sign;
logic sticky_bit;
logic r;

// Extract the sign, exponent, and mantissa from the inputs
assign a_sign = a[31];
assign a_exponent = {1'b0, a[30:23]}; // added leading zero
assign a_mantissa = {1'b1, a[22:0]};

assign b_sign = b[31];
assign b_exponent = {1'b0, b[30:23]}; // added leading zero
assign b_mantissa = {1'b1, b[22:0]};

// Perform the multiplication
assign y_sign = a_sign ^ b_sign;
assign mult_result = a_mantissa * b_mantissa;
assign y_exponent_temp = a_exponent + b_exponent - 127 + mult_result[47];
assign y_mantissa_temp = mult_result[47] ? mult_result[46:24] : mult_result[45:23];
assign sticky_bit = mult_result[47] ? |mult_result[22:0] : |mult_result[21:0];
assign r = mult_result[47] ? mult_result[23] : mult_result[22];

// Check for infinities and NaNs
always_comb begin
// add overflow handling
if (y_exponent_temp[8]) begin
// overflow, set to infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if ((a_exponent[7:0] == 8'hFF && a_mantissa[22:0] != 0) || (b_exponent[7:0] == 8'hFF && b_mantissa[22:0] != 0)) begin
// a or b is NaN, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if ((a == 32'b0 && b_exponent[7:0] == 8'hFF && b_mantissa[22:0] == 0) || (b == 32'b0 && a_exponent[7:0] == 8'hFF && a_mantissa[22:0] == 0)) begin
// a is zero and b is infinity, or b is zero and a is infinity, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if (a == 32'b0 || b == 32'b0) begin
// If either input is zero, output is zero
y_exponent = 8'h00;
y_mantissa = 23'h0;
end else if ((a_exponent[7:0] == 8'hFF && a_mantissa[22:0] == 0) && (b_exponent[7:0] == 8'hFF && b_mantissa[22:0] == 0)) begin
// a is infinity and b is infinity, result is infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if (a_exponent + b_exponent == 0) begin
// Subnormal case
y_exponent = 0;
y_mantissa = y_mantissa_temp >> -y_exponent_temp;
end else begin
// Normal case
y_exponent = y_exponent_temp[7:0];
y_mantissa = y_mantissa_temp + (r & sticky_bit); // Add rounding
end
end

// Combine the sign, exponent, and mantissa into the output
assign y = {y_sign, y_exponent, y_mantissa};
endmodule
This code correctly checks if there is an overflow during the multiplication and correctly outputs infinity when an overflow occurs.




75 changes: 75 additions & 0 deletions data_collection_scripts/FP_Multiplier/prompt_30.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@

Please make sure that any valid number times zero will return zero
ChatGPT
The issue you pointed out can be fixed by rearranging the conditions in the always_comb block. The check for zero in the inputs should be done earlier in the logic to ensure that multiplication by zero results in zero, regardless of other input conditions. Here is the modified Verilog code:

verilog
Copy code
module fp_multiplier(
input logic [31:0] a, // input a
input logic [31:0] b, // input b
output logic [31:0] y // output y
);
logic [8:0] a_exponent, b_exponent, y_exponent_temp; // changed size to [8:0] to prevent overflow
logic [7:0] y_exponent;
logic [23:0] a_mantissa, b_mantissa;
logic [47:0] mult_result;
logic [22:0] y_mantissa_temp, y_mantissa;
logic a_sign, b_sign, y_sign;
logic sticky_bit;
logic r;

// Extract the sign, exponent, and mantissa from the inputs
assign a_sign = a[31];
assign a_exponent = {1'b0, a[30:23]}; // added leading zero
assign a_mantissa = {1'b1, a[22:0]};

assign b_sign = b[31];
assign b_exponent = {1'b0, b[30:23]}; // added leading zero
assign b_mantissa = {1'b1, b[22:0]};

// Perform the multiplication
assign y_sign = a_sign ^ b_sign;
assign mult_result = a_mantissa * b_mantissa;
assign y_exponent_temp = a_exponent + b_exponent - 127 + mult_result[47];
assign y_mantissa_temp = mult_result[47] ? mult_result[46:24] : mult_result[45:23];
assign sticky_bit = mult_result[47] ? |mult_result[22:0] : |mult_result[21:0];
assign r = mult_result[47] ? mult_result[23] : mult_result[22];

// Check for infinities and NaNs
always_comb begin
if (a == 32'b0 || b == 32'b0) begin
// If either input is zero, output is zero
y_exponent = 8'h00;
y_mantissa = 23'h0;
end else if (y_exponent_temp[8]) begin
// overflow, set to infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if ((a_exponent[7:0] == 8'hFF && a_mantissa[22:0] != 0) || (b_exponent[7:0] == 8'hFF && b_mantissa[22:0] != 0)) begin
// a or b is NaN, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if ((a_exponent[7:0] == 8'hFF && a_mantissa[22:0] == 0) && (b_exponent[7:0] == 8'hFF && b_mantissa[22:0] == 0)) begin
// a is infinity and b is infinity, result is infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if (a_exponent + b_exponent == 0) begin
// Subnormal case
y_exponent = 0;
y_mantissa = y_mantissa_temp >> -y_exponent_temp;
end else begin
// Normal case
y_exponent = y_exponent_temp[7:0];
y_mantissa = y_mantissa_temp + (r & sticky_bit); // Add rounding
end
end

// Combine the sign, exponent, and mantissa into the output
assign y = {y_sign, y_exponent, y_mantissa};
endmodule
Now, if either of the inputs is zero, the output will be zero, regardless of the other input, as long as it's not NaN.




81 changes: 81 additions & 0 deletions data_collection_scripts/FP_Multiplier/prompt_31.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@

Please make sure that infinity or -infinity times zero outputs nan
ChatGPT
You're right, the multiplication of infinity (or -infinity) with zero should result in NaN according to the IEEE 754 standard. We should modify the condition checking for zero in our always_comb block to account for this.

Here is the updated Verilog code:

verilog
Copy code
module fp_multiplier(
input logic [31:0] a, // input a
input logic [31:0] b, // input b
output logic [31:0] y // output y
);
logic [8:0] a_exponent, b_exponent, y_exponent_temp; // changed size to [8:0] to prevent overflow
logic [7:0] y_exponent;
logic [23:0] a_mantissa, b_mantissa;
logic [47:0] mult_result;
logic [22:0] y_mantissa_temp, y_mantissa;
logic a_sign, b_sign, y_sign;
logic sticky_bit;
logic r;

// Extract the sign, exponent, and mantissa from the inputs
assign a_sign = a[31];
assign a_exponent = {1'b0, a[30:23]}; // added leading zero
assign a_mantissa = {1'b1, a[22:0]};

assign b_sign = b[31];
assign b_exponent = {1'b0, b[30:23]}; // added leading zero
assign b_mantissa = {1'b1, b[22:0]};

// Perform the multiplication
assign y_sign = a_sign ^ b_sign;
assign mult_result = a_mantissa * b_mantissa;
assign y_exponent_temp = a_exponent + b_exponent - 127 + mult_result[47];
assign y_mantissa_temp = mult_result[47] ? mult_result[46:24] : mult_result[45:23];
assign sticky_bit = mult_result[47] ? |mult_result[22:0] : |mult_result[21:0];
assign r = mult_result[47] ? mult_result[23] : mult_result[22];

// Check for infinities and NaNs
always_comb begin
if ((a == 32'b0 && b_exponent[7:0] == 8'hFF && b_mantissa[22:0] == 0) || (b == 32'b0 && a_exponent[7:0] == 8'hFF && a_mantissa[22:0] == 0)) begin
// a is zero and b is infinity, or b is zero and a is infinity, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if (a == 32'b0 || b == 32'b0) begin
// If either input is zero, output is zero
y_exponent = 8'h00;
y_mantissa = 23'h0;
end else if (y_exponent_temp[8]) begin
// overflow, set to infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if ((a_exponent[7:0] == 8'hFF && a_mantissa[22:0] != 0) || (b_exponent[7:0] == 8'hFF && b_mantissa[22:0] != 0)) begin
// a or b is NaN, result is NaN
y_exponent = 8'hFF;
y_mantissa = 23'h400000; // Set mantissa to 23'h400000 for NaN cases
end else if ((a_exponent[7:0] == 8'hFF && a_mantissa[22:0] == 0) && (b_exponent[7:0] == 8'hFF && b_mantissa[22:0] == 0)) begin
// a is infinity and b is infinity, result is infinity
y_exponent = 8'hFF;
y_mantissa = 23'h0;
end else if (a_exponent + b_exponent == 0) begin
// Subnormal case
y_exponent = 0;
y_mantissa = y_mantissa_temp >> -y_exponent_temp;
end else begin
// Normal case
y_exponent = y_exponent_temp[7:0];
y_mantissa = y_mantissa_temp + (r & sticky_bit); // Add rounding
end
end

// Combine the sign, exponent, and mantissa into the output
assign y = {y_sign, y_exponent, y_mantissa};
endmodule
Now, the multiplication of zero and infinity (or -infinity) will correctly result in NaN.




Loading

0 comments on commit 57aaf49

Please sign in to comment.