Skip to content

Commit

Permalink
tmp for 4090node
Browse files Browse the repository at this point in the history
  • Loading branch information
wwbwang committed Apr 23, 2024
1 parent ff32d0c commit ba152ed
Show file tree
Hide file tree
Showing 9 changed files with 845 additions and 84 deletions.
1 change: 1 addition & 0 deletions .vscode/launch.json
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
// "options/train_unet_3d.yml",
// "options/train_projection_cyclegan_rotatedVISoR.yml",
"options/MPCN_wsl.yml",
// "--auto_resume",
],
"justMyCode": false
}
Expand Down
3 changes: 1 addition & 2 deletions inference_MPCN.sh
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
branch_name=MPCN_VISoR_nonorm_noclip # _size128
branch_name=SIREN_noBN_noscreen_print1_
# branch_name=MPCN_VISoR_new_datasets
# branch_name=MPCN_VISoR_64128256
iter='10000000000' # nan Appoint in terminal

# 从命令行获取参数
Expand Down
48 changes: 25 additions & 23 deletions options/MPCN_VISoR.yml
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# general settings
name: SIREN
name: SIREN_no3daug_trainbegin
model_type: MPCN_VISoR_Model
num_gpu: auto # set num_gpu: 0 for cpu mode
manual_seed: 0
Expand All @@ -17,12 +17,13 @@ datasets:
datasets_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/front_256_datasets
datasets_rotated_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/rotated_front_256_datasets
mean: 0 # 0.254 # 0.1535 # 0.0728 # 0.141
percentiles: [0,1] # [0.01,0.9999]
percentiles_MIP: [0,1] # [0.01,0.9999]
screen_flag: True
percentiles: [0,1]
threshold_percentiles_cube: [0,0.99]
threshold_percentiles_MIP: [0,0.99]
screen_flag: False
min_value: 0
max_value: 65535
threshold: 500
threshold: 350
add_syn_times: 1
io_backend:
type: disk
Expand All @@ -38,7 +39,7 @@ datasets:
num_worker_per_gpu: 8
batch_size_per_gpu: 8
dataset_enlarge_ratio: 1
prefetch_mode: ~
prefetch_mode: ~ # cuda # FIXME
pin_memory: True

val: # setting sames as trainset
Expand All @@ -47,8 +48,9 @@ datasets:
datasets_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/front_256_datasets
datasets_rotated_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/rotated_front_256_datasets
mean: 0 # 0.254 # 0.1535 # 0.0728 # 0.141
percentiles: [0,1] # [0.01,0.9999]
percentiles_MIP: [0,1] # [0.01,0.9999]
percentiles: [0,1]
threshold_percentiles_cube: [0,0.99]
threshold_percentiles_MIP: [0,0.99]
screen_flag: True
min_value: 0
max_value: 65535
Expand All @@ -59,7 +61,7 @@ datasets:
use_flip: true
use_rot: true
gt_size: [64, 128] # fullsize is 128
gt_probs: [1, 0]
gt_probs: [0, 1]
iso_dimension: -1 # -3/-2/-1 <--> 0/1/2, means anisotropic in dimension 2
aniso_dimension: -2

Expand All @@ -84,46 +86,46 @@ network_d_anisoproj:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: 'batch' # can be None
norm_type: ~ # 'batch' # can be None
dim: 2

network_d_isoproj:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: 'batch' # can be None
norm_type: ~ # 'batch' # can be None
dim: 2

network_d_A2C:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: 'batch' # can be None
norm_type: ~ # 'batch' # can be None
dim: 3

network_d_recA1:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: 'batch' # can be None
norm_type: ~ # 'batch' # can be None
dim: 3

network_d_recA2:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: 'batch' # can be None
norm_type: ~ # 'batch' # can be None
dim: 3

# path
path:
pretrain_network_g_A: ~
pretrain_network_g_B: ~
pretrain_network_d_anisoproj: ~
pretrain_network_d_iso: ~
pretrain_network_d_A2C: ~
pretrain_network_d_recA1: ~
pretrain_network_d_recA2: ~
pretrain_network_g_A: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_g_A_15500.pth
pretrain_network_g_B: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_g_B_15500.pth
pretrain_network_d_anisoproj: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_anisoproj_15500.pth
pretrain_network_d_isoproj: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_isoproj_15500.pth
pretrain_network_d_A2C: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_A2C_15500.pth
pretrain_network_d_recA1: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_recA1_15500.pth
pretrain_network_d_recA2: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_recA2_15500.pth
param_key_g_A: params
param_key_g_B: params
strict_load_g: true
Expand Down Expand Up @@ -195,9 +197,9 @@ train:

# validation settings
val:
val_freq: !!float 5e2 # FIXME
val_freq: !!float 100 # FIXME
save_img: True
save_number: 16
save_number: 4

# logging settings
logger:
Expand Down
218 changes: 218 additions & 0 deletions options/MPCN_VISoR_noA2C.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
# general settings
name: SIREN_no3daug_noA2C_trainbegin_screenflag_0.9max
model_type: MPCN_VISoR_noA2CModel
num_gpu: auto # set num_gpu: 0 for cpu mode
manual_seed: 0

# # USM the ground-truth
# l1_gt_usm: False
# percep_gt_usm: False
# gan_gt_usm: False

# dataset and data loader settings
datasets:
train:
name: rotated_blocks
type: Paired_tif_Dataset
datasets_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/front_256_datasets
datasets_rotated_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/rotated_front_256_datasets
mean: 0 # 0.254 # 0.1535 # 0.0728 # 0.141
percentiles: [0,1]
threshold_percentiles_cube: [0.01,0.9]
threshold_percentiles_MIP: [0.01,0.9]
screen_flag: True
min_value: 0
max_value: 65535
threshold: 350
add_syn_times: 1
io_backend:
type: disk
use_flip: true
use_rot: true
gt_size: [64, 128] # fullsize is 128
gt_probs: [1, 0]
iso_dimension: -1 # -3/-2/-1 <--> 0/1/2, means anisotropic in dimension 2
aniso_dimension: -2

# data loader
use_shuffle: true
num_worker_per_gpu: 1
batch_size_per_gpu: 2
dataset_enlarge_ratio: 1
prefetch_mode: ~ # cuda # FIXME
pin_memory: True

val: # setting sames as trainset
name: rotated_blocks_val
type: Paired_tif_Dataset # FIXME
datasets_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/front_256_datasets
datasets_rotated_cube: /share/home/wangwb/workspace/sr_3dunet/datasets/Mouse_Brain/rotated_front_256_datasets
mean: 0 # 0.254 # 0.1535 # 0.0728 # 0.141
percentiles: [0,1]
threshold_percentiles_cube: [0,0.99]
threshold_percentiles_MIP: [0,0.99]
screen_flag: True
min_value: 0
max_value: 65535
threshold: 500
add_syn_times: 1
io_backend:
type: disk
use_flip: true
use_rot: true
gt_size: [64, 128] # fullsize is 128
gt_probs: [0, 1]
iso_dimension: -1 # -3/-2/-1 <--> 0/1/2, means anisotropic in dimension 2
aniso_dimension: -2

# network structures
network_g_A:
type: UNet_3d_Generator
in_channels: 1
out_channels: 1
features: [64, 128, 256] # [64, 128, 256, 512]
norm_type: ~ # can be None
dim: 3

network_g_B:
type: UNet_3d_Generator
in_channels: 1
out_channels: 1
features: [64, 128, 256] # [64, 128, 256, 512]
norm_type: ~ # can be None
dim: 3

network_d_anisoproj:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: ~ # 'batch' # can be None
dim: 2

network_d_isoproj:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: ~ # 'batch' # can be None
dim: 2

network_d_A2C:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: ~ # 'batch' # can be None
dim: 3

network_d_recA1:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: ~ # 'batch' # can be None
dim: 3

network_d_recA2:
type: CubeDiscriminator
in_channels: 1
features: [64, 128, 256]
norm_type: ~ # 'batch' # can be None
dim: 3

# path
path:
pretrain_network_g_A: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_g_A_15500.pth
pretrain_network_g_B: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_g_B_15500.pth
pretrain_network_d_anisoproj: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_anisoproj_15500.pth
pretrain_network_d_isoproj: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_isoproj_15500.pth
pretrain_network_d_A2C: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_A2C_15500.pth
pretrain_network_d_recA1: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_recA1_15500.pth
pretrain_network_d_recA2: ~ # /share/home/wangwb/workspace/sr_3dunet/experiments/SIREN_noBN/models/net_d_recA2_15500.pth
param_key_g_A: params
param_key_g_B: params
strict_load_g: true
strict_load_d: true
resume_state: ~
param_key_d: params

# training settings
train:
ema_decay: 0 # 0.999
optim_g:
type: Adam
lr: !!float 1e-4
weight_decay: 0
betas: [0.9, 0.99]
lr_flow: !!float 1e-5
optim_d:
type: Adam
lr: !!float 1e-4
weight_decay: 0
betas: [0.9, 0.99]

scheduler:
type: MultiStepLR
milestones: [300000]
gamma: 0.5

total_iter: 3000000
warmup_iter: -1 # no warm up
fix_flow: ~

# losses
projection_opt:
type: L1Loss
loss_weight: 10.0
reduction: mean
projection_ssim_opt:
type: SSIMLoss
loss_weight : 1.0
data_range: 1
size_average: True
win_size: 11
win_sigma: 1.5
channel: 1
dim: 2
gan_opt:
type: GANLoss
gan_type: lsgan
real_label_val: 1.0
fake_label_val: 0.0
loss_weight: !!float 1.0 # 0.1??? # TODO
cycle_opt:
type: L1Loss
loss_weight: 10.0
reduction: mean
cycle_ssim_opt:
type: SSIMLoss
loss_weight : 1.0 # 3.0
data_range: 1
size_average: True
win_size: 11
win_sigma: 1.5
channel: 1
dim: 3

net_d_iters: 1
net_g_iters: 1
net_d_init_iters: 0

# validation settings
val:
val_freq: !!float 100 # FIXME
save_img: True
save_number: 4

# logging settings
logger:
print_freq: 10
save_checkpoint_freq: !!float 500
use_tb_logger: true
wandb:
project: ~
resume_id: ~

# dist training settings
dist_params:
backend: nccl
port: 29505

find_unused_parameters: true
Loading

0 comments on commit ba152ed

Please sign in to comment.