Skip to content
forked from SBU-BMI/wsinfer

๐Ÿ”ฅ๐Ÿš€ Blazingly fast pipeline for patch-based classification in whole slide images

License

Notifications You must be signed in to change notification settings

xalexalex/wsinfer

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

WSInfer: deep learning inference on whole slide images

Original H&E Heatmap of Tumor Probability

๐Ÿ”ฅ ๐Ÿš€ Blazingly fast pipeline to run patch-based classification models on whole slide images.

Continuous Integration Documentation Status Version on PyPI Supported Python versions

See https://wsinfer.readthedocs.io for documentation.

Installation

Pip

WSInfer will install PyTorch automatically if it is not installed, but this may not install GPU-enabled PyTorch even if a GPU is available. For this reason, install PyTorch before installing WSInfer. Please see PyTorch's installation instructions for help install PyTorch.

python -m pip install wsinfer

To use the bleeding edge, use

python -m pip install git+https://github.com/SBU-BMI/wsinfer.git

Developers

Clone this GitHub repository and install the package (in editable mode with the dev extras).

git clone https://github.com/SBU-BMI/wsinfer.git
cd wsinfer
python -m pip install --editable .[dev]

Cutting a release

When ready to cut a new release, follow these steps:

  1. Update the base image versions Dockerfiles in dockerfiles/. Update the version to the version you will release.

  2. Commit this change.

  3. Create a tag, where VERSION is a string like v0.3.6:

    git tag -a -m 'wsinfer version VERSION' VERSION
    
  4. Build wheel: python -m build

  5. Create a fresh virtual environment and install the wheel. Make sure wsinfer --help works.

  6. Push code to GitHub: git push --tags

  7. Build and push docker images: bash scripts/build_docker_images.sh 0.3.6 1

  8. Push wheel to PyPI: twine upload dist/*

About

๐Ÿ”ฅ๐Ÿš€ Blazingly fast pipeline for patch-based classification in whole slide images

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.3%
  • Dockerfile 0.7%