Skip to content

sft_scripts_zh

iMountTai edited this page Mar 4, 2024 · 3 revisions

指令精调脚本

训练步骤

进入项目的scripts/training目录,运行bash run_sft.sh进行指令精调,默认使用单卡。运行前用户应先修改脚本并指定相关参数,脚本中的相关参数值仅供调试参考。run_sft.sh的内容如下:

########参数部分########
lr=1e-4
lora_rank=64
lora_alpha=128
lora_trainable="q_proj,v_proj,k_proj,o_proj,gate,w1,w2,w3"
modules_to_save="embed_tokens,lm_head"
lora_dropout=0.05

pretrained_model=path/to/hf/chinese-mixtral/dir/or/model_id
dataset_dir=path/to/sft/data/dir
per_device_train_batch_size=1
per_device_eval_batch_size=1
gradient_accumulation_steps=8
max_seq_length=1024
output_dir=output_dir
validation_file=validation_file_name

deepspeed_config_file=ds_zero2_no_offload.json

torchrun --nnodes 1 --nproc_per_node 1 run_clm_sft_with_peft.py \
    --deepspeed ${deepspeed_config_file} \
    --model_name_or_path ${pretrained_model} \
    --tokenizer_name_or_path ${pretrained_model} \
    --dataset_dir ${dataset_dir} \
    --per_device_train_batch_size ${per_device_train_batch_size} \
    --per_device_eval_batch_size ${per_device_eval_batch_size} \
    --do_train \
    --do_eval \
    --seed $RANDOM \
    --fp16 \
    --num_train_epochs 3 \
    --lr_scheduler_type cosine \
    --learning_rate ${lr} \
    --warmup_ratio 0.05 \
    --weight_decay 0.1 \
    --logging_strategy steps \
    --logging_steps 10 \
    --save_strategy steps \
    --save_total_limit 3 \
    --evaluation_strategy steps \
    --eval_steps 100 \
    --save_steps 200 \
    --gradient_accumulation_steps ${gradient_accumulation_steps} \
    --preprocessing_num_workers 8 \
    --max_seq_length ${max_seq_length} \
    --output_dir ${output_dir} \
    --overwrite_output_dir \
    --ddp_timeout 30000 \
    --logging_first_step True \
    --lora_rank ${lora_rank} \
    --lora_alpha ${lora_alpha} \
    --trainable ${lora_trainable} \
    --lora_dropout ${lora_dropout} \
    --modules_to_save ${modules_to_save} \
    --torch_dtype float16 \
    --validation_file ${validation_file} \
    --load_in_kbits 4 \
    --gradient_checkpointing \
    --ddp_find_unused_parameters False \
    --output_router_logits

其中一些参数的含义不言自明。部分参数的解释如下:

  • --dataset_dir: 指令精调数据的目录,包含一个或多个以json结尾的Stanford Alpaca格式的指令精调数据文件
  • --validation_file: 用作验证集的单个指令精调文件,以json结尾,同样遵循Stanford Alpaca格式
  • --use_flash_attention_2: 启用FlashAttention-2加速训练
  • --load_in_kbits: 可选择参数为16/8/4,即使用fp16或8bit/4bit量化进行模型训练,默认fp16训练。

这里列出的其他训练相关超参数(尤其是学习率,以及和total batch size大小相关的参数)仅供参考。请在实际使用时根据数据情况以及硬件条件进行配置。

Stanford Alpaca格式如下:

[
  {"instruction" : ...,
   "input" : ...,
   "output" : ...},
  ...
]

使用多机多卡

请参考以下启动方式:

torchrun \
  --nnodes ${num_nodes} \
  --nproc_per_node ${num_gpu_per_node} 
  --node_rank ${node_rank} \
  --master_addr ${master_addr} \
  --master_port ${master_port} \
  run_clm_sft_with_peft.py \
    ...