Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: ragas integration #194

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions examples/rag/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# Retrieval Augmented Generation (RAG) Evaluation with RAGAS

This example shows how to use the [ragas](https://docs.ragas.io/) library to evaluate retrieval augmented generation (RAG) models
and visualize the results using Zeno.

The [rag-eval.ipynb](rag-eval.ipynb) notebook walks through an example on the [
Financial Opinion Mining and Question Answering (fiqa)](https://sites.google.com/view/fiqa/) dataset.
205 changes: 205 additions & 0 deletions examples/rag/rag-eval.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import dotenv\n",
"from datasets import load_dataset\n",
"import pandas as pd\n",
"from zeno_client import ZenoClient, ZenoMetric\n",
"from ragas.metrics import (\n",
" answer_relevancy,\n",
" faithfulness,\n",
" context_recall,\n",
" context_precision,\n",
")\n",
"from ragas import evaluate\n",
"\n",
"dotenv.load_dotenv(override=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fiqa_eval = load_dataset(\"explodinggradients/fiqa\", \"ragas_eval\")\n",
"fiqa_eval"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"result = evaluate(\n",
" fiqa_eval[\"baseline\"],\n",
" metrics=[\n",
" context_precision,\n",
" faithfulness,\n",
" answer_relevancy,\n",
" context_recall,\n",
" ],\n",
")\n",
"\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = result.to_pandas()\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client = ZenoClient(os.environ[\"ZENO_API_KEY\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"project = client.create_project(\n",
" name=\"ragas FICA eval\",\n",
" description=\"Evaluation of RAG model using ragas on FICA dataset\",\n",
" public=True,\n",
" view={\n",
" \"data\": {\n",
" \"type\": \"vstack\",\n",
" \"keys\": {\n",
" \"question\": {\"type\": \"markdown\"},\n",
" \"texts\": {\n",
" \"type\": \"list\",\n",
" \"elements\": {\"type\": \"markdown\"},\n",
" \"border\": True,\n",
" \"pad\": True,\n",
" },\n",
" },\n",
" },\n",
" \"label\": {\n",
" \"type\": \"markdown\",\n",
" },\n",
" \"output\": {\n",
" \"type\": \"vstack\",\n",
" \"keys\": {\n",
" \"answer\": {\"type\": \"markdown\"},\n",
" \"ground_truths\": {\n",
" \"type\": \"list\",\n",
" \"elements\": {\"type\": \"markdown\"},\n",
" \"border\": True,\n",
" \"pad\": True,\n",
" },\n",
" },\n",
" },\n",
" \"size\": \"large\",\n",
" },\n",
" metrics=[\n",
" ZenoMetric(\n",
" name=\"context_precision\", type=\"mean\", columns=[\"context_precision\"]\n",
" ),\n",
" ZenoMetric(name=\"faithfulness\", type=\"mean\", columns=[\"faithfulness\"]),\n",
" ZenoMetric(name=\"answer_relevancy\", type=\"mean\", columns=[\"answer_relevancy\"]),\n",
" ZenoMetric(name=\"context_recall\", type=\"mean\", columns=[\"context_recall\"]),\n",
" ],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_df = pd.DataFrame(\n",
" {\n",
" \"data\": df.apply(\n",
" lambda x: {\"question\": x[\"question\"], \"texts\": list(x[\"contexts\"])}, axis=1\n",
" ),\n",
" \"label\": df[\"ground_truths\"].apply(lambda x: \"\\n\".join(x)),\n",
" }\n",
")\n",
"data_df[\"id\"] = data_df.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"project.upload_dataset(\n",
" data_df, id_column=\"id\", data_column=\"data\", label_column=\"label\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output_df = df[\n",
" [\n",
" \"context_precision\",\n",
" \"faithfulness\",\n",
" \"answer_relevancy\",\n",
" \"context_recall\",\n",
" ]\n",
"].copy()\n",
"output_df[\"output\"] = df.apply(\n",
" lambda x: {\"answer\": x[\"answer\"], \"ground_truths\": list(x[\"ground_truths\"])}, axis=1\n",
")\n",
"output_df[\"id\"] = output_df.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"project.upload_system(\n",
" output_df, name=\"Base System\", id_column=\"id\", output_column=\"output\"\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "zeno-build",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
3 changes: 3 additions & 0 deletions examples/rag/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
ragas
python-dotenv
datasets
Loading