Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Wavlm models (WIP) #2219

Draft
wants to merge 3 commits into
base: maeb
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions mteb/models/overview.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@
voyage_models,
voyage_v,
wav2vec_models,
wavlm_models
)

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -138,6 +139,7 @@
voyage_models,
fa_models,
wav2vec_models,
wavlm_models
]
MODEL_REGISTRY = {}

Expand Down
271 changes: 271 additions & 0 deletions mteb/models/wavlm_models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,271 @@
from __future__ import annotations

from functools import partial

import numpy as np
import torch
from datasets import Audio
from transformers import Wav2Vec2FeatureExtractor, WavLMModel

from mteb.encoder_interface import AudioEncoder, PromptType
from mteb.model_meta import ModelMeta


class WavlmWrapper(AudioEncoder):
def __init__(
self,
model_name: str,
model_revision: str,
device: str | None = None,
**kwargs,
):
super().__init__(device=device, **kwargs)
self.model_name = model_name
self.model_revision = model_revision

self.model = WavLMModel.from_pretrained(
self.model_name, revision=self.model_revision
)
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
self.model_name,
# revision=self.model_revision
)
self.embed_dim = self.model.config.hidden_size

if device:
self.model = self.model.to(device)

def get_audio_embeddings(
self, audio_files: list[Audio] | Audio, batch_size: int = 32, **kwargs
) -> np.ndarray:
if not isinstance(audio_files, list):
audio_files = [audio_files]

all_embeddings = []

for i in range(0, len(audio_files), batch_size):
batch = audio_files[i : i + batch_size]

audio_data = [file["array"] for file in batch]
sampling_rates = [file["sampling_rate"] for file in batch]

# Preprocess batch
inputs = self.feature_extractor(
audio_data,
sampling_rate=sampling_rates[0],
padding=True,
return_tensors="pt",
)

if hasattr(self, "device") and self.device:
inputs = {k: v.to(self.device) for k, v in inputs.items()}

# Get embeddings
with torch.no_grad():
outputs = self.model(
input_values=inputs["input_values"],
output_hidden_states=True,
return_dict=True,
)

hidden_states = outputs.hidden_states[-1]
batch_embeddings = hidden_states.mean(dim=1).cpu().numpy()
all_embeddings.append(batch_embeddings)

return np.vstack(all_embeddings)

def encode(
self,
audio_files: list[Audio],
*,
task_name: str,
prompt_type: PromptType | None = None,
batch_size: int = 32,
**kwargs,
) -> np.ndarray:
return self.get_audio_embeddings(audio_files, batch_size=batch_size, **kwargs)


wavlm_base = ModelMeta(
loader=partial(
WavlmWrapper,
model_name="microsoft/wavlm-base",
model_revision="efa81aae7ff777e464159e0f877d54eac5b84f81",
),
name="microsoft/wavlm-base",
languages=["eng"],
open_weights=True,
revision="efa81aae7ff777e464159e0f877d54eac5b84f81",
release_date="2022-07-19",
max_tokens=float("inf"),
n_parameters=94_700_000,
memory_usage_mb=361,
embed_dim=768,
license="MIT",
reference="https://huggingface.co/microsoft/wavlm-base",
similarity_fn_name="cosine",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
training_datasets=None,
modalities=["audio"],
)

wavlm_base_sd = ModelMeta(
loader=partial(
WavlmWrapper,
model_name="microsoft/wavlm-base-sd",
model_revision="fe13cca7e592cf0e11287cfede24e6999ac7dc4e",
),
name="microsoft/wavlm-base-sd",
languages=["eng"],
open_weights=True,
revision="fe13cca7e592cf0e11287cfede24e6999ac7dc4e",
release_date="2022-07-19",
max_tokens=float("inf"),
n_parameters=94_700_000,
memory_usage_mb=361,
embed_dim=768,
license="MIT",
reference="https://huggingface.co/microsoft/wavlm-base-sd",
similarity_fn_name="cosine",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
training_datasets=None,
modalities=["audio"],
)

wavlm_base_plus = ModelMeta(
loader=partial(
WavlmWrapper,
model_name="microsoft/wavlm-base-plus",
model_revision="4c66d4806a428f2e922ccfa1a962776e232d487b",
),
name="microsoft/wavlm-base-plus",
languages=["eng"],
open_weights=True,
revision="4c66d4806a428f2e922ccfa1a962776e232d487b",
release_date="2022-07-19",
max_tokens=float("inf"),
n_parameters=94_700_000,
memory_usage_mb=361,
embed_dim=768,
license="MIT",
reference="https://huggingface.co/microsoft/wavlm-base-plus",
similarity_fn_name="cosine",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
training_datasets=None,
modalities=["audio"],
)

wavlm_base_plus_sv = ModelMeta(
loader=partial(
WavlmWrapper,
model_name="microsoft/wavlm-base-plus-sv",
model_revision="feb593a6c23c1cc3d9510425c29b0a14d2b07b1e",
),
name="microsoft/wavlm-base-plus-sv",
languages=["eng"],
open_weights=True,
revision="feb593a6c23c1cc3d9510425c29b0a14d2b07b1e",
release_date="2022-07-19",
max_tokens=float("inf"),
n_parameters=94_700_000,
memory_usage_mb=361,
embed_dim=768,
license="MIT",
reference="https://huggingface.co/microsoft/wavlm-base-plus-sv",
similarity_fn_name="cosine",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
training_datasets=None,
modalities=["audio"],
)

wavlm_base_plus_sd = ModelMeta(
loader=partial(
WavlmWrapper,
model_name="microsoft/wavlm-base-plus-sd",
model_revision="5bd86f0662bd55704109a794c6a1b1790ea0f91a",
),
name="microsoft/wavlm-base-plus-sd",
languages=["eng"],
open_weights=True,
revision="5bd86f0662bd55704109a794c6a1b1790ea0f91a",
release_date="2022-07-19",
max_tokens=float("inf"),
n_parameters=94_700_000,
memory_usage_mb=361,
embed_dim=768,
license="MIT",
reference="https://huggingface.co/microsoft/wavlm-base-plus-sd",
similarity_fn_name="cosine",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
training_datasets=None,
modalities=["audio"],
)


wavlm_base_sv = ModelMeta(
loader=partial(
WavlmWrapper,
model_name="microsoft/wavlm-base-sv",
model_revision="0a23162ffc49adcf42bdf836a00cb2eb45af3601",
),
name="microsoft/wavlm-base-sv",
languages=["eng"],
open_weights=True,
revision="0a23162ffc49adcf42bdf836a00cb2eb45af3601",
release_date="2022-07-19",
max_tokens=float("inf"),
n_parameters=94_700_000,
memory_usage_mb=361,
embed_dim=768,
license="MIT",
reference="https://huggingface.co/microsoft/wavlm-base-sv",
similarity_fn_name="cosine",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
training_datasets=None,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you add annotation of training_datasets?

modalities=["audio"],
)


wavlm_large = ModelMeta(
loader=partial(
WavlmWrapper,
model_name="microsoft/wavlm-large",
model_revision="c1423ed94bb01d80a3f5ce5bc39f6026a0f4828c",
),
name="microsoft/wavlm-large",
languages=["eng"],
open_weights=True,
revision="c1423ed94bb01d80a3f5ce5bc39f6026a0f4828c",
release_date="2022-07-19",
max_tokens=float("inf"),
n_parameters=316_620_000,
memory_usage_mb=1208,
embed_dim=1024,
license="MIT",
reference="https://huggingface.co/microsoft/wavlm-large",
similarity_fn_name="cosine",
framework=["PyTorch"],
use_instructions=False,
public_training_code=None,
public_training_data=None,
training_datasets=None,
modalities=["audio"],
)
Loading