-
Notifications
You must be signed in to change notification settings - Fork 4
Usage
mAGLAVE edited this page Oct 5, 2022
·
6 revisions
- make the parameters file according to your needs (configfile: see Configuration section)
- indicate the path to this file in the path_to_configfile variable
- run the snakemake command
#parameters
path_to_configfile="<path/to/your_configfile.yaml>"
path_to_pipeline="/mnt/beegfs/pipelines/single-cell/<version>"
#launch
snakemake --profile ${path_to_pipeline}/profiles/slurm -s ${path_to_pipeline}/Snakefile --configfile ${path_to_configfile}
NB: The first utilisation can take some time because of the installation of conda sub-environment (automatic).
- make the parameters file according to your needs (configfile: see Configuration section)
- indicate the path to this file in the path_to_configfile variable
- indicate the path to this pipeline in the path_to_pipeline variable
- run the snakemake command
#parameters
path_to_configfile="<path/to/your_configfile.yaml>"
path_to_pipeline="<path/to/single-cell>"
#launch
snakemake --profile ${path_to_pipeline}/profiles/local -s ${path_to_pipeline}/Snakefile --configfile ${path_to_configfile}
NB: The first utilisation can take some time because of the installation of conda sub-environment (automatic).
Cerebro, cell report browser, is an AppShiny which allows users to interactively visualize various parts of single cell transcriptomics analysis without requiring bioinformatics expertise.
At the end of your analysis, you can generate a cerebro object to load it into cerebroApp.
You can use cerebro under R on your local machine:
#to install cerebro:
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
BiocManager::install("romanhaa/cerebroApp")
#to launch cerebro:
cerebroApp::launchCerebro()
Resources of the Theory of single cell RNA-seq
v1.3
Pipeline details
Configuration
-
Parameter file
- Steps
- Alignment_countTable_GE
- Droplets_QC_GE
- Filtering_GE
- Norm_DimRed_Eval_GE
- Clust_Markers_Annot_GE
- Cerebro
- Alignment_countTable_ADT
- Adding_ADT
- Alignment_annotations_TCR_BCR
- Adding_TCR
- Adding_BCR
- Int_Norm_DimRed_Eval_GE
- Int_Clust_Markers_Annot_GE
- Int_Adding_ADT
- Int_Adding_TCR
- Int_Adding_BCR
- Grp_Norm_DimRed_Eval_GE
- Grp_Clust_Markers_Annot_GE
- Grp_Adding_ADT
- Grp_Adding_TCR
- Grp_Adding_BCR
- Additional files
Results help
- Arborescence of all results
-
Observations and weird results
- Not a threshold by emptyDrops
- Large and small cells into the same sample
- emptyDrops does't work well
- More than 15% mitochondrial RNA while I filtered them out at 15%
- Impact of empty droplets on umap
- Choose the right number of dimensions
- Be careful with the colors, they are sometimes misleading
- Impact of bias correction on umap
Complete Examples of school cases
Individual analysis :
1 sample (scRNA-seq + ADT + TCR + BCR)
Grouped/Integrated analysis :
2 samples (scRNA-seq + ADT + TCR + BCR)