Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

merge the branch "rjn-merge2" into development #1

Merged
merged 16 commits into from
Mar 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
300 changes: 300 additions & 0 deletions Examples/Physics_applications/impact_ionization/PICMI_inputs_3d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
#!/usr/bin/env python3
#
# --- Input file for MCC testing

import os
os.environ["OMP_NUM_THREADS"] = "4"
# sys.path.append("path_to_rsfusion")

from pywarpx import picmi, particle_containers, callbacks

import numpy as np

import scipy.constants
constants = picmi.constants

from rsbeams.rsstats import kinematic


##########################
# Parameters to Set
##########################

self_consistent_fields = False
n_beams = 1 #only implemented for a single beam

interactions = {'ndt' : 1, #period to call rxns
}

diagnostics = {'directory' : 'ion_impact_0v',
'HDF5_particle_diagnostic' : True,
'HDF5_field_diagnostic' : False,
}

beam_specifics = {'injection_period' : 5,
'diag_period' : 500,
'radius' : 4.0e-3, #m
'nmp' : 1, #Num macroparticles to emit per emission step
}

run_specifics = {'nx' : 64,
'ny' : 64,
'nz' : 32,
'xmax' : 1.0, #m
'ymax' : 1.0, #m
'zmax' : 0.5, #m
'dt' : 1.0e-10, #s
'tmax' : 40.0e-6, #s
}

deuterium_specifics = {'species_type' : 'deuterium',
'n_beams' : n_beams,
'mass' : 1874.61e6, #eV/c^2
'v_x' : 1.696e6, #m/s
'ke' : None, #eV
'current' : 5.0e-4, #A
'density' : None, #num/m^3
'charge' : scipy.constants.e, #C
'time_start' : 0.0, #s
'time_duration' : run_specifics['tmax'], #s
'length' : None, #m
'injection_radius' : 0.4, #m
'injection_offset' : np.pi, #rad
'injection_direction' : 0.5,
}

##########################
# physics parameters
##########################

N_INERT = 9.64e20 # m^-3
T_INERT = 300.0 # K
M_INERT = 4.65e-26 # kg

##########################
# numerics components
##########################

dn_array = np.array([(2.0* run_specifics['xmax'])/run_specifics['nx'],
(2.0* run_specifics['ymax'])/run_specifics['ny'],
(2.0* run_specifics['zmax'])/run_specifics['nz']])

grid = picmi.Cartesian3DGrid(
number_of_cells=[run_specifics['nx'],
run_specifics['ny'],
run_specifics['nz']],
lower_bound=[-run_specifics['xmax'],
-run_specifics['ymax'],
-run_specifics['zmax']],
upper_bound=[run_specifics['xmax'],
run_specifics['ymax'],
run_specifics['zmax']],
bc_xmin='neumann',
bc_xmax='neumann',
bc_ymin='neumann',
bc_ymax='neumann',
bc_zmin='neumann',
bc_zmax='neumann',
lower_boundary_conditions_particles=['absorbing', 'absorbing', 'absorbing'],
upper_boundary_conditions_particles=['absorbing', 'absorbing', 'absorbing']
)

solver = picmi.ElectrostaticSolver(
grid=grid,
method='Multigrid',
required_precision=1e-1,
warpx_self_fields_verbosity = 0,
)

##########################
# define species
##########################

electrons = picmi.Species(
particle_type='electron', name='electrons',
initial_distribution=None,
warpx_do_not_deposit=not self_consistent_fields,
warpx_self_fields_verbosity=0
)

deuterium = picmi.Species(
mass=deuterium_specifics['mass'] * constants.q_e / constants.c ** 2,
charge=deuterium_specifics['charge'],
name='deuterium',
initial_distribution=None,
warpx_do_not_deposit=not self_consistent_fields,
warpx_self_fields_verbosity=0
)

deuterium_specifics['nmp'] = beam_specifics['nmp']
deuterium_specifics['cross_sec_area'] = np.pi * beam_specifics['radius']**2.0
if deuterium_specifics['ke'] == None:
deuterium_specifics['ke'] = kinematic.Converter(velocity=deuterium_specifics['v_x'], mass=deuterium_specifics['mass'])(silent=True)["kenergy"]
if deuterium_specifics['v_x'] == None:
deuterium_specifics['v_x'] = kinematic.Converter(kenergy=deuterium_specifics['ke'], mass=deuterium_specifics['mass'])(silent=True)['velocity']
if deuterium_specifics['time_duration'] == None:
deuterium_specifics['time_duration'] = deuterium_specifics['length']/deuterium_specifics['v_x']
if deuterium_specifics['density'] == None:
deuterium_specifics['density'] = deuterium_specifics['current'] / (np.abs(deuterium_specifics['charge']) * deuterium_specifics['cross_sec_area'] * deuterium_specifics['v_x'])

##########################
# collisions
##########################

collisions = []

# # MCC collisions
# # https://github.com/ECP-WarpX/warpx-data/tree/master/MCC_cross_sections
# cross_sec_direc = '../../../warpx-data/MCC_cross_sections/He/' #Change this to reflect warpx-data location (note, only has He, Ar, and Xe)

# # https://warpx.readthedocs.io/en/latest/usage/python.html#pywarpx.picmi.MCCCollisions:~:text=pywarpx.picmi.MCCCollisions
# mcc_ions = picmi.MCCCollisions(
# name='coll_ion',
# species=deuterium,
# background_density=N_INERT,
# background_temperature=T_INERT,
# background_mass=M_INERT,
# scattering_processes={
# 'ionization' : {
# 'cross_section' : cross_sec_direc+'ionization.dat',
# 'species' : deuterium
# },
# }
# electron_species=electrons
# )

# collisions.append(mcc_ions)

##########################
# simulation setup
##########################

sim = picmi.Simulation(
solver=solver,
max_steps=int(run_specifics['tmax']/run_specifics['dt']),
verbose=0,
time_step_size=run_specifics['dt'],
warpx_collisions=collisions if collisions else None,
)

##########################
# diagnostics
##########################

diagdire = diagnostics['directory']

if diagnostics['HDF5_particle_diagnostic']:
species_list = [deuterium]
part_diag = picmi.ParticleDiagnostic(write_dir = f'./diags/{diagdire}',
warpx_file_prefix = 'particle',
period=beam_specifics['diag_period'],
species=species_list,
warpx_openpmd_backend='h5',
warpx_format='openpmd',
data_list=['x', 'y', 'z', 'ux', 'uy', 'uz', 'weighting'])
sim.add_diagnostic(part_diag)

if diagnostics['HDF5_field_diagnostic']:
field_diag = picmi.FieldDiagnostic(write_dir = f'./diags/{diagdire}',
warpx_file_prefix = 'field',
grid = grid,
period=beam_specifics['diag_period'],
warpx_openpmd_backend='h5',
warpx_format='openpmd',
data_list=['B', 'E', 'J', 'rho'])
sim.add_diagnostic(field_diag)

##########################
# particle initialization
##########################

sim.add_species(deuterium, layout=picmi.GriddedLayout(n_macroparticle_per_cell=1))
sim.add_species(electrons, layout = picmi.GriddedLayout(n_macroparticle_per_cell=1))

##########################
# particle injection
##########################

def rotation(a: list[float, float, float], b: list[float, float, float]) -> np.ndarray:
# Rotate unit vector a to unit vector b
v = np.cross(a, b)
s = np.linalg.norm(v)
c = np.dot(a, b)
v_mat = np.array([[ 0, -v[2], v[1]],
[ v[2], 0, -v[0]],
[-v[1], v[0], 0]])
R = np.identity(3) + v_mat + np.dot(v_mat, v_mat) * (1 - c) / s**2

return R

def deuterium_injection(sim, position, min_step, max_step, period, size,
weight, species, macroparticles, unit_vector, kinetic_energy):

if (sim.extension.warpx.getistep(0) < min_step) or ((sim.extension.warpx.getistep(0) > max_step) and (max_step > 0)):
return
if sim.extension.warpx.getistep(0) % period == 0:

species_kinematic = kinematic.Converter(kenergy=kinetic_energy, mass=species.mass, mass_unit='SI')(silent=True)
w = species_kinematic['velocity'] * sim.time_step_size * period

theta = np.random.uniform(0.0, 2.0*np.pi, size=[macroparticles*period])
radius_1 = np.random.uniform(0.0,size[0]/2.0, size=[macroparticles*period])
radius_2 = np.random.uniform(0.0,size[1]/2.0, size=[macroparticles*period])
z = np.random.uniform(w/-2.0,w/2.0, size=[macroparticles*period])
x = radius_1 * np.cos(theta)
y = radius_2 * np.sin(theta)
coordinates = np.vstack((x,y,z)).T.reshape([macroparticles*period, 3, 1])
coordinates = np.matmul(rotation([0, 0, 1], unit_vector), coordinates).squeeze()
coordinates += position
x, y, z = coordinates.T

momenta = (species_kinematic['betagamma'] * constants.c) * np.ones_like(coordinates) * unit_vector
ux, uy, uz = momenta.T

species_wrapper = particle_containers.ParticleContainerWrapper(species.name)
# warpx requires that arrays it receives be contiguous
species_wrapper.add_particles(
x=np.ascontiguousarray(x), y=np.ascontiguousarray(y), z=np.ascontiguousarray(z),
ux=np.ascontiguousarray(ux), uy=np.ascontiguousarray(uy), uz=np.ascontiguousarray(uz),
w=np.ascontiguousarray(np.ones_like(ux))*weight, unique_particles=False
)

theta_slice = (2.0*np.pi) / deuterium_specifics['n_beams']
theta = (theta_slice) + deuterium_specifics['injection_offset']
x_pos = deuterium_specifics['injection_radius']*np.cos(theta)
y_pos = deuterium_specifics['injection_radius']*np.sin(theta)

if deuterium_specifics['injection_direction'].is_integer():
normal_vector = [y_pos * deuterium_specifics['injection_direction'],
-x_pos * deuterium_specifics['injection_direction'],0]
else:
normal_vector = [-x_pos * np.sign(deuterium_specifics['injection_direction']),
-y_pos * np.sign(deuterium_specifics['injection_direction']),0]

min_step = np.ceil(deuterium_specifics['time_start'] / run_specifics['dt'])

callbacks.installbeforestep(
deuterium_injection(
sim= sim,
position= [x_pos, y_pos, 0.0],
min_step= min_step,
max_step= np.ceil(deuterium_specifics['time_duration'] / run_specifics['dt']) +min_step,
period= beam_specifics['injection_period'],
size= [(2.0*beam_specifics['radius']), (2.0*beam_specifics['radius'])],
weight= (deuterium_specifics['density'] * deuterium_specifics['v_x'] * run_specifics['dt'] * deuterium_specifics['cross_sec_area']) / deuterium_specifics['nmp'],
species= deuterium,
macroparticles= beam_specifics['nmp'],
unit_vector= np.array(normal_vector) / np.sqrt(np.sum(np.array(normal_vector)**2)),
kinetic_energy= deuterium_specifics['ke']
)
)

##########################
# simulation run
##########################

# Write input file that can be used to run with the compiled version
directory = diagnostics['directory']
sim.write_input_file(file_name=f'inputs_{directory}')

sim.step()
Loading