-
Notifications
You must be signed in to change notification settings - Fork 34
colRowAlls_subset
matrixStats: Benchmark report
This report benchmark the performance of colAlls() and rowAlls() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "logical")
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3059340 163.4 5709258 305.0 5709258 305.0
Vcells 5157201 39.4 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAlls_X_S = colAlls(X_S), `colAlls(X, rows, cols)` = colAlls(X, rows = rows,
+ cols = cols), `colAlls(X[rows, cols])` = colAlls(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3058602 163.4 5709258 305.0 5709258 305.0
Vcells 5155247 39.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAlls_X_S = rowAlls(X_S), `rowAlls(X, cols, rows)` = rowAlls(X, rows = cols,
+ cols = rows), `rowAlls(X[cols, rows])` = rowAlls(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 0.001408 | 0.0014320 | 0.0031280 | 0.0014625 | 0.0015420 | 0.163060 |
2 | colAlls(X, rows, cols) | 0.001590 | 0.0016440 | 0.0017440 | 0.0016685 | 0.0017460 | 0.004163 |
3 | colAlls(X[rows, cols]) | 0.002065 | 0.0021885 | 0.0025035 | 0.0023625 | 0.0024835 | 0.008878 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colAlls(X, rows, cols) | 1.129261 | 1.148045 | 0.5575551 | 1.140855 | 1.132296 | 0.0255305 |
3 | colAlls(X[rows, cols]) | 1.466619 | 1.528282 | 0.8003651 | 1.615385 | 1.610571 | 0.0544462 |
Table: Benchmarking of rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 0.001262 | 0.0013075 | 0.0013901 | 0.001330 | 0.0013950 | 0.003398 |
2 | rowAlls(X, cols, rows) | 0.001455 | 0.0014985 | 0.0034254 | 0.001552 | 0.0017120 | 0.182386 |
3 | rowAlls(X[cols, rows]) | 0.001795 | 0.0019045 | 0.0021800 | 0.002065 | 0.0021765 | 0.007941 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAlls(X, cols, rows) | 1.152932 | 1.146080 | 2.464125 | 1.166917 | 1.227240 | 53.674514 |
3 | rowAlls(X[cols, rows]) | 1.422346 | 1.456597 | 1.568181 | 1.552632 | 1.560215 | 2.336963 |
Figure: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 10x10 data as well as rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAlls_X_S | 1.262 | 1.3075 | 1.39012 | 1.3300 | 1.395 | 3.398 |
1 | colAlls_X_S | 1.408 | 1.4320 | 3.12796 | 1.4625 | 1.542 | 163.060 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAlls_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | colAlls_X_S | 1.115689 | 1.09522 | 2.250137 | 1.099624 | 1.105376 | 47.98705 |
Figure: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3058017 163.4 5709258 305.0 5709258 305.0
Vcells 5119555 39.1 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAlls_X_S = colAlls(X_S), `colAlls(X, rows, cols)` = colAlls(X, rows = rows,
+ cols = cols), `colAlls(X[rows, cols])` = colAlls(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3058011 163.4 5709258 305.0 5709258 305.0
Vcells 5124638 39.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAlls_X_S = rowAlls(X_S), `rowAlls(X, cols, rows)` = rowAlls(X, rows = cols,
+ cols = rows), `rowAlls(X[cols, rows])` = rowAlls(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 0.001944 | 0.0022095 | 0.0023710 | 0.0023175 | 0.0024495 | 0.004717 |
2 | colAlls(X, rows, cols) | 0.002419 | 0.0026585 | 0.0029568 | 0.0028195 | 0.0029815 | 0.010399 |
3 | colAlls(X[rows, cols]) | 0.017432 | 0.0177885 | 0.0183429 | 0.0179420 | 0.0181455 | 0.041368 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAlls(X, rows, cols) | 1.244342 | 1.203213 | 1.247075 | 1.216613 | 1.217187 | 2.204579 |
3 | colAlls(X[rows, cols]) | 8.967078 | 8.050916 | 7.736413 | 7.741963 | 7.407838 | 8.769981 |
Table: Benchmarking of rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 0.003000 | 0.0033290 | 0.0035083 | 0.0034460 | 0.0035930 | 0.006415 |
2 | rowAlls(X, cols, rows) | 0.003421 | 0.0037425 | 0.0039460 | 0.0038795 | 0.0039750 | 0.007173 |
3 | rowAlls(X[cols, rows]) | 0.010020 | 0.0104265 | 0.0110952 | 0.0106155 | 0.0107805 | 0.041441 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAlls(X, cols, rows) | 1.140333 | 1.124211 | 1.124776 | 1.125798 | 1.106318 | 1.118161 |
3 | rowAlls(X[cols, rows]) | 3.340000 | 3.132022 | 3.162587 | 3.080528 | 3.000418 | 6.460016 |
Figure: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 100x100 data as well as rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.944 | 2.2095 | 2.37098 | 2.3175 | 2.4495 | 4.717 |
2 | rowAlls_X_S | 3.000 | 3.3290 | 3.50828 | 3.4460 | 3.5930 | 6.415 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | rowAlls_X_S | 1.54321 | 1.506676 | 1.479675 | 1.486947 | 1.46683 | 1.359975 |
Figure: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3058771 163.4 5709258 305.0 5709258 305.0
Vcells 5123628 39.1 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAlls_X_S = colAlls(X_S), `colAlls(X, rows, cols)` = colAlls(X, rows = rows,
+ cols = cols), `colAlls(X[rows, cols])` = colAlls(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3058762 163.4 5709258 305.0 5709258 305.0
Vcells 5128706 39.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAlls_X_S = rowAlls(X_S), `rowAlls(X, cols, rows)` = rowAlls(X, rows = cols,
+ cols = rows), `rowAlls(X[cols, rows])` = rowAlls(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 0.001351 | 0.001427 | 0.0015849 | 0.0015085 | 0.0016505 | 0.005117 |
2 | colAlls(X, rows, cols) | 0.002145 | 0.002229 | 0.0026838 | 0.0023415 | 0.0024660 | 0.034505 |
3 | colAlls(X[rows, cols]) | 0.016284 | 0.016699 | 0.0171418 | 0.0168145 | 0.0170015 | 0.030637 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAlls(X, rows, cols) | 1.587713 | 1.562018 | 1.693337 | 1.552204 | 1.494093 | 6.743209 |
3 | colAlls(X[rows, cols]) | 12.053294 | 11.702172 | 10.815667 | 11.146503 | 10.300818 | 5.987297 |
Table: Benchmarking of rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 0.006176 | 0.0062465 | 0.0069544 | 0.0063220 | 0.0064580 | 0.040551 |
2 | rowAlls(X, cols, rows) | 0.007471 | 0.0075660 | 0.0080869 | 0.0077225 | 0.0079595 | 0.015814 |
3 | rowAlls(X[cols, rows]) | 0.017889 | 0.0181085 | 0.0194976 | 0.0182985 | 0.0185370 | 0.040142 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAlls(X, cols, rows) | 1.209683 | 1.211238 | 1.162838 | 1.221528 | 1.232502 | 0.3899781 |
3 | rowAlls(X[cols, rows]) | 2.896535 | 2.898983 | 2.803612 | 2.894416 | 2.870393 | 0.9899139 |
Figure: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 1000x10 data as well as rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.351 | 1.4270 | 1.58490 | 1.5085 | 1.6505 | 5.117 |
2 | rowAlls_X_S | 6.176 | 6.2465 | 6.95445 | 6.3220 | 6.4580 | 40.551 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAlls_X_S | 4.571429 | 4.377365 | 4.387943 | 4.190918 | 3.912754 | 7.924761 |
Figure: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3058974 163.4 5709258 305.0 5709258 305.0
Vcells 5124429 39.1 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAlls_X_S = colAlls(X_S), `colAlls(X, rows, cols)` = colAlls(X, rows = rows,
+ cols = cols), `colAlls(X[rows, cols])` = colAlls(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3058968 163.4 5709258 305.0 5709258 305.0
Vcells 5129512 39.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAlls_X_S = rowAlls(X_S), `rowAlls(X, cols, rows)` = rowAlls(X, rows = cols,
+ cols = rows), `rowAlls(X[cols, rows])` = rowAlls(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 0.004488 | 0.0047875 | 0.0052068 | 0.0050045 | 0.005300 | 0.011778 |
2 | colAlls(X, rows, cols) | 0.008280 | 0.0092255 | 0.0099900 | 0.0094240 | 0.009714 | 0.052993 |
3 | colAlls(X[rows, cols]) | 0.013296 | 0.0135805 | 0.0142384 | 0.0139020 | 0.014359 | 0.023996 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAlls(X, rows, cols) | 1.844920 | 1.926997 | 1.918671 | 1.883105 | 1.832830 | 4.499321 |
3 | colAlls(X[rows, cols]) | 2.962567 | 2.836658 | 2.734614 | 2.777900 | 2.709245 | 2.037358 |
Table: Benchmarking of rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 0.005664 | 0.0067125 | 0.0077411 | 0.0071900 | 0.0076575 | 0.045072 |
2 | rowAlls(X, cols, rows) | 0.008594 | 0.0101785 | 0.0110121 | 0.0108175 | 0.0114600 | 0.018645 |
3 | rowAlls(X[cols, rows]) | 0.013025 | 0.0142005 | 0.0150228 | 0.0146910 | 0.0151995 | 0.034543 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAlls(X, cols, rows) | 1.517302 | 1.516350 | 1.422537 | 1.504520 | 1.496572 | 0.4136715 |
3 | rowAlls(X[cols, rows]) | 2.299612 | 2.115531 | 1.940642 | 2.043255 | 1.984917 | 0.7663960 |
Figure: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 10x1000 data as well as rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 4.488 | 4.7875 | 5.20675 | 5.0045 | 5.3000 | 11.778 |
2 | rowAlls_X_S | 5.664 | 6.7125 | 7.74114 | 7.1900 | 7.6575 | 45.072 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAlls_X_S | 1.262032 | 1.402089 | 1.486751 | 1.436707 | 1.444811 | 3.826796 |
Figure: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3059173 163.4 5709258 305.0 5709258 305.0
Vcells 5147073 39.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAlls_X_S = colAlls(X_S), `colAlls(X, rows, cols)` = colAlls(X, rows = rows,
+ cols = cols), `colAlls(X[rows, cols])` = colAlls(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3059167 163.4 5709258 305.0 5709258 305.0
Vcells 5197156 39.7 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAlls_X_S = rowAlls(X_S), `rowAlls(X, cols, rows)` = rowAlls(X, rows = cols,
+ cols = rows), `rowAlls(X[cols, rows])` = rowAlls(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 0.005554 | 0.0064470 | 0.0070582 | 0.0069275 | 0.0072755 | 0.019822 |
2 | colAlls(X, rows, cols) | 0.010863 | 0.0120410 | 0.0130683 | 0.0124000 | 0.0128140 | 0.072151 |
3 | colAlls(X[rows, cols]) | 0.153107 | 0.1540355 | 0.1553696 | 0.1545630 | 0.1552315 | 0.197734 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAlls(X, rows, cols) | 1.955888 | 1.86769 | 1.851496 | 1.789967 | 1.761254 | 3.639946 |
3 | colAlls(X[rows, cols]) | 27.566979 | 23.89259 | 22.012482 | 22.311512 | 21.336197 | 9.975482 |
Table: Benchmarking of rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 0.018842 | 0.0206950 | 0.0222333 | 0.0215225 | 0.0222730 | 0.060481 |
2 | rowAlls(X, cols, rows) | 0.022701 | 0.0249305 | 0.0277703 | 0.0260480 | 0.0273615 | 0.047461 |
3 | rowAlls(X[cols, rows]) | 0.082743 | 0.0847925 | 0.0890761 | 0.0855490 | 0.0864580 | 0.159622 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.0000000 |
2 | rowAlls(X, cols, rows) | 1.204808 | 1.204663 | 1.249040 | 1.210268 | 1.22846 | 0.7847258 |
3 | rowAlls(X[cols, rows]) | 4.391413 | 4.097246 | 4.006425 | 3.974864 | 3.88174 | 2.6392090 |
Figure: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 100x1000 data as well as rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 5.554 | 6.447 | 7.05825 | 6.9275 | 7.2755 | 19.822 |
2 | rowAlls_X_S | 18.842 | 20.695 | 22.23330 | 21.5225 | 22.2730 | 60.481 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | rowAlls_X_S | 3.39251 | 3.21002 | 3.149973 | 3.106821 | 3.06137 | 3.051206 |
Figure: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3059389 163.4 5709258 305.0 5709258 305.0
Vcells 5147739 39.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAlls_X_S = colAlls(X_S), `colAlls(X, rows, cols)` = colAlls(X, rows = rows,
+ cols = cols), `colAlls(X[rows, cols])` = colAlls(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3059383 163.4 5709258 305.0 5709258 305.0
Vcells 5197822 39.7 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAlls_X_S = rowAlls(X_S), `rowAlls(X, cols, rows)` = rowAlls(X, rows = cols,
+ cols = rows), `rowAlls(X[cols, rows])` = rowAlls(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 0.001920 | 0.0023075 | 0.0025936 | 0.0024830 | 0.0027075 | 0.006253 |
2 | colAlls(X, rows, cols) | 0.002877 | 0.0032770 | 0.0036432 | 0.0034865 | 0.0037040 | 0.008226 |
3 | colAlls(X[rows, cols]) | 0.065247 | 0.0659110 | 0.0675744 | 0.0661680 | 0.0665560 | 0.144712 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAlls(X, rows, cols) | 1.498438 | 1.420152 | 1.404687 | 1.404148 | 1.368052 | 1.315529 |
3 | colAlls(X[rows, cols]) | 33.982813 | 28.563814 | 26.054191 | 26.648409 | 24.582087 | 23.142812 |
Table: Benchmarking of rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 0.015859 | 0.0161130 | 0.0164732 | 0.0163055 | 0.0164835 | 0.031029 |
2 | rowAlls(X, cols, rows) | 0.016869 | 0.0172705 | 0.0178412 | 0.0174245 | 0.0176640 | 0.029128 |
3 | rowAlls(X[cols, rows]) | 0.082111 | 0.0826030 | 0.0838155 | 0.0828220 | 0.0831350 | 0.162462 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAlls(X, cols, rows) | 1.063686 | 1.071836 | 1.083047 | 1.068627 | 1.071617 | 0.9387347 |
3 | rowAlls(X[cols, rows]) | 5.177565 | 5.126482 | 5.088002 | 5.079390 | 5.043528 | 5.2358117 |
Figure: Benchmarking of colAlls_X_S(), colAlls(X, rows, cols)() and colAlls(X[rows, cols])() on 1000x100 data as well as rowAlls_X_S(), rowAlls(X, cols, rows)() and rowAlls(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.920 | 2.3075 | 2.59361 | 2.4830 | 2.7075 | 6.253 |
2 | rowAlls_X_S | 15.859 | 16.1130 | 16.47317 | 16.3055 | 16.4835 | 31.029 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAlls_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAlls_X_S | 8.259896 | 6.982882 | 6.351445 | 6.566855 | 6.088089 | 4.962258 |
Figure: Benchmarking of colAlls_X_S() and rowAlls_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 10.84 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowAlls_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 20:34:45 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>