-
Notifications
You must be signed in to change notification settings - Fork 34
colRowAnys_subset
matrixStats: Benchmark report
This report benchmark the performance of colAnys() and rowAnys() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "logical")
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3074487 164.2 5709258 305.0 5709258 305.0
Vcells 5562356 42.5 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3073415 164.2 5709258 305.0 5709258 305.0
Vcells 5559586 42.5 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.001356 | 0.0013930 | 0.0017866 | 0.0014200 | 0.0015050 | 0.032118 |
2 | colAnys(X, rows, cols) | 0.001524 | 0.0015715 | 0.0016938 | 0.0016095 | 0.0017605 | 0.004875 |
3 | colAnys(X[rows, cols]) | 0.002085 | 0.0022755 | 0.0025050 | 0.0023670 | 0.0024930 | 0.010202 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colAnys(X, rows, cols) | 1.123894 | 1.128141 | 0.9480516 | 1.133451 | 1.169767 | 0.1517840 |
3 | colAnys(X[rows, cols]) | 1.537611 | 1.633525 | 1.4021035 | 1.666901 | 1.656478 | 0.3176412 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.001364 | 0.0014030 | 0.0015140 | 0.001437 | 0.0015250 | 0.003704 |
2 | rowAnys(X, cols, rows) | 0.001585 | 0.0016445 | 0.0021096 | 0.001670 | 0.0018735 | 0.036419 |
3 | rowAnys(X[cols, rows]) | 0.001948 | 0.0021695 | 0.0025403 | 0.002287 | 0.0024125 | 0.015965 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys(X, cols, rows) | 1.162024 | 1.172131 | 1.393456 | 1.162143 | 1.228525 | 9.832343 |
3 | rowAnys(X[cols, rows]) | 1.428152 | 1.546329 | 1.677913 | 1.591510 | 1.581967 | 4.310205 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.356 | 1.393 | 1.78658 | 1.420 | 1.505 | 32.118 |
2 | rowAnys_X_S | 1.364 | 1.403 | 1.51397 | 1.437 | 1.525 | 3.704 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.0000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys_X_S | 1.0059 | 1.007179 | 0.8474124 | 1.011972 | 1.013289 | 0.1153247 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3071909 164.1 5709258 305.0 5709258 305.0
Vcells 5227681 39.9 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3071903 164.1 5709258 305.0 5709258 305.0
Vcells 5232764 40.0 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.001899 | 0.0021305 | 0.0022950 | 0.0022515 | 0.0023810 | 0.005052 |
2 | colAnys(X, rows, cols) | 0.002252 | 0.0025330 | 0.0028043 | 0.0026585 | 0.0028205 | 0.010225 |
3 | colAnys(X[rows, cols]) | 0.017541 | 0.0177730 | 0.0184920 | 0.0179225 | 0.0181725 | 0.057294 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.185887 | 1.188923 | 1.221883 | 1.180768 | 1.184586 | 2.023951 |
3 | colAnys(X[rows, cols]) | 9.236967 | 8.342173 | 8.057389 | 7.960249 | 7.632297 | 11.340855 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.004288 | 0.0045325 | 0.0046608 | 0.004629 | 0.0047535 | 0.006961 |
2 | rowAnys(X, cols, rows) | 0.004684 | 0.0048875 | 0.0050583 | 0.005001 | 0.0051535 | 0.007404 |
3 | rowAnys(X[cols, rows]) | 0.011358 | 0.0116880 | 0.0124336 | 0.011819 | 0.0120495 | 0.049704 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys(X, cols, rows) | 1.092351 | 1.078323 | 1.085297 | 1.080363 | 1.084148 | 1.063640 |
3 | rowAnys(X[cols, rows]) | 2.648787 | 2.578709 | 2.667732 | 2.553251 | 2.534869 | 7.140353 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.899 | 2.1305 | 2.29504 | 2.2515 | 2.3810 | 5.052 |
2 | rowAnys_X_S | 4.288 | 4.5325 | 4.66075 | 4.6290 | 4.7535 | 6.961 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 |
2 | rowAnys_X_S | 2.25803 | 2.127435 | 2.030793 | 2.055963 | 1.99643 | 1.37787 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3072663 164.1 5709258 305.0 5709258 305.0
Vcells 5231753 40.0 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3072654 164.1 5709258 305.0 5709258 305.0
Vcells 5236831 40.0 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.001355 | 0.0014415 | 0.0015528 | 0.001504 | 0.0016045 | 0.004313 |
2 | colAnys(X, rows, cols) | 0.002147 | 0.0022315 | 0.0025625 | 0.002302 | 0.0023915 | 0.025150 |
3 | colAnys(X[rows, cols]) | 0.016088 | 0.0166010 | 0.0170227 | 0.016715 | 0.0168990 | 0.032261 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.584502 | 1.54804 | 1.650239 | 1.530585 | 1.490495 | 5.831208 |
3 | colAnys(X[rows, cols]) | 11.873063 | 11.51648 | 10.962353 | 11.113697 | 10.532253 | 7.479944 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.004583 | 0.005022 | 0.0053577 | 0.0050665 | 0.0052030 | 0.033800 |
2 | rowAnys(X, cols, rows) | 0.005105 | 0.005268 | 0.0054948 | 0.0053960 | 0.0055455 | 0.010779 |
3 | rowAnys(X[cols, rows]) | 0.013506 | 0.013847 | 0.0145027 | 0.0140710 | 0.0142960 | 0.033346 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.113899 | 1.048984 | 1.025595 | 1.065035 | 1.065827 | 0.3189053 |
3 | rowAnys(X[cols, rows]) | 2.946978 | 2.757268 | 2.706917 | 2.777262 | 2.747646 | 0.9865680 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.355 | 1.4415 | 1.55283 | 1.5040 | 1.6045 | 4.313 |
2 | rowAnys_X_S | 4.583 | 5.0220 | 5.35766 | 5.0665 | 5.2030 | 33.800 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys_X_S | 3.382288 | 3.483871 | 3.450255 | 3.368683 | 3.242755 | 7.836773 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3072866 164.2 5709258 305.0 5709258 305.0
Vcells 5232551 40.0 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3072860 164.2 5709258 305.0 5709258 305.0
Vcells 5237634 40.0 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.004855 | 0.0051615 | 0.0056257 | 0.005482 | 0.0058970 | 0.011418 |
2 | colAnys(X, rows, cols) | 0.008077 | 0.0094130 | 0.0100815 | 0.009698 | 0.0100265 | 0.043876 |
3 | colAnys(X[rows, cols]) | 0.013571 | 0.0140430 | 0.0146889 | 0.014408 | 0.0148745 | 0.023496 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.663646 | 1.823695 | 1.792040 | 1.769062 | 1.700271 | 3.842704 |
3 | colAnys(X[rows, cols]) | 2.795263 | 2.720721 | 2.611033 | 2.628238 | 2.522384 | 2.057803 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.009044 | 0.0098765 | 0.0149362 | 0.0102615 | 0.0108710 | 0.200069 |
2 | rowAnys(X, cols, rows) | 0.009850 | 0.0114350 | 0.0141290 | 0.0120690 | 0.0128595 | 0.041426 |
3 | rowAnys(X[cols, rows]) | 0.016586 | 0.0173130 | 0.0233150 | 0.0178590 | 0.0183900 | 0.164487 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.089120 | 1.157799 | 0.945956 | 1.176144 | 1.182918 | 0.2070586 |
3 | rowAnys(X[cols, rows]) | 1.833923 | 1.752949 | 1.560976 | 1.740389 | 1.691657 | 0.8221514 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 4.855 | 5.1615 | 5.62569 | 5.4820 | 5.897 | 11.418 |
2 | rowAnys_X_S | 9.044 | 9.8765 | 14.93616 | 10.2615 | 10.871 | 200.069 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 |
2 | rowAnys_X_S | 1.862822 | 1.913494 | 2.654992 | 1.871853 | 1.84348 | 17.52225 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3073065 164.2 5709258 305.0 5709258 305.0
Vcells 5255196 40.1 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3073059 164.2 5709258 305.0 5709258 305.0
Vcells 5305279 40.5 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.005351 | 0.0061920 | 0.0077397 | 0.0068515 | 0.007864 | 0.025802 |
2 | colAnys(X, rows, cols) | 0.009326 | 0.0120895 | 0.0143827 | 0.0131150 | 0.013843 | 0.068032 |
3 | colAnys(X[rows, cols]) | 0.152655 | 0.1552720 | 0.1678322 | 0.1606905 | 0.166528 | 0.354265 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.742852 | 1.952439 | 1.858294 | 1.914179 | 1.76030 | 2.636695 |
3 | colAnys(X[rows, cols]) | 28.528312 | 25.076227 | 21.684563 | 23.453331 | 21.17599 | 13.730137 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.042043 | 0.0438890 | 0.0454123 | 0.0446005 | 0.045449 | 0.084432 |
2 | rowAnys(X, cols, rows) | 0.042650 | 0.0442855 | 0.0455195 | 0.0453670 | 0.046423 | 0.056537 |
3 | rowAnys(X[cols, rows]) | 0.123326 | 0.1266025 | 0.1302286 | 0.1282850 | 0.129231 | 0.195170 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.014438 | 1.009034 | 1.002360 | 1.017186 | 1.021431 | 0.6696158 |
3 | rowAnys(X[cols, rows]) | 2.933330 | 2.884607 | 2.867693 | 2.876313 | 2.843429 | 2.3115643 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 5.351 | 6.192 | 7.73971 | 6.8515 | 7.864 | 25.802 |
2 | rowAnys_X_S | 42.043 | 43.889 | 45.41231 | 44.6005 | 45.449 | 84.432 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys_X_S | 7.857036 | 7.088017 | 5.867443 | 6.509596 | 5.779374 | 3.272305 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3073281 164.2 5709258 305.0 5709258 305.0
Vcells 5255863 40.1 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3073275 164.2 5709258 305.0 5709258 305.0
Vcells 5305946 40.5 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.002617 | 0.0028565 | 0.0031919 | 0.0030350 | 0.0032470 | 0.010359 |
2 | colAnys(X, rows, cols) | 0.003639 | 0.0039855 | 0.0044078 | 0.0042635 | 0.0044615 | 0.011315 |
3 | colAnys(X[rows, cols]) | 0.081950 | 0.0824815 | 0.0853578 | 0.0828950 | 0.0845325 | 0.184085 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.390524 | 1.395239 | 1.38093 | 1.404778 | 1.374038 | 1.092287 |
3 | colAnys(X[rows, cols]) | 31.314482 | 28.875022 | 26.74199 | 27.313015 | 26.034031 | 17.770538 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.028460 | 0.0287755 | 0.0294075 | 0.0289865 | 0.0293925 | 0.043539 |
2 | rowAnys(X, cols, rows) | 0.028699 | 0.0290525 | 0.0294747 | 0.0293630 | 0.0297725 | 0.031693 |
3 | rowAnys(X[cols, rows]) | 0.093992 | 0.0946480 | 0.0976003 | 0.0953205 | 0.0974690 | 0.195697 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.008398 | 1.009626 | 1.002285 | 1.012989 | 1.012928 | 0.7279221 |
3 | rowAnys(X[cols, rows]) | 3.302600 | 3.289187 | 3.318894 | 3.288445 | 3.316118 | 4.4947518 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 2.617 | 2.8565 | 3.19190 | 3.0350 | 3.2470 | 10.359 |
2 | rowAnys_X_S | 28.460 | 28.7755 | 29.40748 | 28.9865 | 29.3925 | 43.539 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys_X_S | 10.87505 | 10.07369 | 9.213158 | 9.550741 | 9.052202 | 4.203012 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 11.83 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowAnys_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 20:35:59 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>