-
Notifications
You must be signed in to change notification settings - Fork 34
colRowMeans2_subset
matrixStats: Benchmark report
This report benchmark the performance of colMeans2() and rowMeans2() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3136175 167.5 5709258 305.0 5709258 305.0
Vcells 6002295 45.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135354 167.5 5709258 305.0 5709258 305.0
Vcells 6000266 45.8 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.001012 | 0.0010510 | 0.0020686 | 0.001078 | 0.0011485 | 0.095374 |
2 | colMeans2(X, rows, cols) | 0.001151 | 0.0012030 | 0.0012986 | 0.001238 | 0.0013625 | 0.002528 |
3 | colMeans2(X[rows, cols]) | 0.001505 | 0.0016795 | 0.0019137 | 0.001777 | 0.0018630 | 0.009139 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colMeans2(X, rows, cols) | 1.137352 | 1.144624 | 0.6277621 | 1.148423 | 1.186330 | 0.0265062 |
3 | colMeans2(X[rows, cols]) | 1.487154 | 1.598002 | 0.9251009 | 1.648423 | 1.622116 | 0.0958228 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.001020 | 0.0010495 | 0.0011459 | 0.0010730 | 0.0011835 | 0.003048 |
2 | rowMeans2(X, cols, rows) | 0.001145 | 0.0012030 | 0.0024958 | 0.0012345 | 0.0013545 | 0.119225 |
3 | rowMeans2(X[cols, rows]) | 0.001490 | 0.0016965 | 0.0019195 | 0.0017670 | 0.0019030 | 0.006960 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2(X, cols, rows) | 1.122549 | 1.146260 | 2.178058 | 1.150513 | 1.144487 | 39.115814 |
3 | rowMeans2(X[cols, rows]) | 1.460784 | 1.616484 | 1.675161 | 1.646785 | 1.607943 | 2.283465 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 1.020 | 1.0495 | 1.14586 | 1.073 | 1.1835 | 3.048 |
1 | colMeans2_X_S | 1.012 | 1.0510 | 2.06865 | 1.078 | 1.1485 | 95.374 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.00000 | 1.0000000 | 1.00000 |
1 | colMeans2_X_S | 0.9921569 | 1.001429 | 1.805325 | 1.00466 | 0.9704267 | 31.29068 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3133736 167.4 5709258 305.0 5709258 305.0
Vcells 5667703 43.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3133730 167.4 5709258 305.0 5709258 305.0
Vcells 5672786 43.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.005694 | 0.0061670 | 0.0063227 | 0.0062875 | 0.0064465 | 0.009233 |
2 | colMeans2(X, rows, cols) | 0.006572 | 0.0071280 | 0.0073177 | 0.0072620 | 0.0074115 | 0.009410 |
3 | colMeans2(X[rows, cols]) | 0.013319 | 0.0138425 | 0.0145661 | 0.0139635 | 0.0141635 | 0.058807 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.154197 | 1.155829 | 1.157359 | 1.154990 | 1.149694 | 1.019170 |
3 | colMeans2(X[rows, cols]) | 2.339129 | 2.244608 | 2.303762 | 2.220835 | 2.197084 | 6.369219 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.005697 | 0.0061965 | 0.0064094 | 0.0063030 | 0.0064685 | 0.011850 |
2 | rowMeans2(X, cols, rows) | 0.006557 | 0.0071110 | 0.0072179 | 0.0072015 | 0.0073030 | 0.008348 |
3 | rowMeans2(X[cols, rows]) | 0.013179 | 0.0137340 | 0.0145504 | 0.0139095 | 0.0141270 | 0.057671 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMeans2(X, cols, rows) | 1.150957 | 1.147583 | 1.126135 | 1.142551 | 1.129010 | 0.7044726 |
3 | rowMeans2(X[cols, rows]) | 2.313323 | 2.216413 | 2.270157 | 2.206806 | 2.183969 | 4.8667511 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 5.694 | 6.1670 | 6.32274 | 6.2875 | 6.4465 | 9.233 |
2 | rowMeans2_X_S | 5.697 | 6.1965 | 6.40942 | 6.3030 | 6.4685 | 11.850 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowMeans2_X_S | 1.000527 | 1.004784 | 1.013709 | 1.002465 | 1.003413 | 1.28344 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3134491 167.4 5709258 305.0 5709258 305.0
Vcells 5671775 43.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3134482 167.4 5709258 305.0 5709258 305.0
Vcells 5676853 43.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.006722 | 0.0069635 | 0.0071653 | 0.0070890 | 0.0073120 | 0.009325 |
2 | colMeans2(X, rows, cols) | 0.007619 | 0.0078585 | 0.0082350 | 0.0080095 | 0.0081170 | 0.029352 |
3 | colMeans2(X[rows, cols]) | 0.014012 | 0.0145155 | 0.0149172 | 0.0147140 | 0.0149725 | 0.022443 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.133442 | 1.128527 | 1.149287 | 1.129849 | 1.110093 | 3.147668 |
3 | colMeans2(X[rows, cols]) | 2.084499 | 2.084512 | 2.081857 | 2.075610 | 2.047661 | 2.406756 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.006780 | 0.0069645 | 0.0072516 | 0.0070650 | 0.007216 | 0.022338 |
2 | rowMeans2(X, cols, rows) | 0.007701 | 0.0078305 | 0.0083144 | 0.0079920 | 0.008159 | 0.028389 |
3 | rowMeans2(X[cols, rows]) | 0.015216 | 0.0155620 | 0.0159080 | 0.0157035 | 0.016001 | 0.022441 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2(X, cols, rows) | 1.135841 | 1.124345 | 1.146560 | 1.131210 | 1.130682 | 1.270884 |
3 | rowMeans2(X[cols, rows]) | 2.244248 | 2.234475 | 2.193735 | 2.222718 | 2.217433 | 1.004611 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 6.780 | 6.9645 | 7.25157 | 7.065 | 7.216 | 22.338 |
1 | colMeans2_X_S | 6.722 | 6.9635 | 7.16533 | 7.089 | 7.312 | 9.325 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colMeans2_X_S | 0.9914454 | 0.9998564 | 0.9881074 | 1.003397 | 1.013304 | 0.4174501 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3134694 167.5 5709258 305.0 5709258 305.0
Vcells 5672624 43.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3134688 167.5 5709258 305.0 5709258 305.0
Vcells 5677707 43.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.005980 | 0.0061935 | 0.0064048 | 0.0063075 | 0.006527 | 0.008118 |
2 | colMeans2(X, rows, cols) | 0.008556 | 0.0088300 | 0.0092065 | 0.0089355 | 0.009063 | 0.032344 |
3 | colMeans2(X[rows, cols]) | 0.014404 | 0.0147800 | 0.0151480 | 0.0149365 | 0.015171 | 0.022208 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.430769 | 1.425688 | 1.437450 | 1.416647 | 1.388540 | 3.984233 |
3 | colMeans2(X[rows, cols]) | 2.408696 | 2.386373 | 2.365113 | 2.368054 | 2.324345 | 2.735649 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.006087 | 0.0063315 | 0.0068189 | 0.0064500 | 0.0066295 | 0.036717 |
2 | rowMeans2(X, cols, rows) | 0.008336 | 0.0084690 | 0.0086735 | 0.0085570 | 0.0087445 | 0.010745 |
3 | rowMeans2(X[cols, rows]) | 0.013369 | 0.0138670 | 0.0143932 | 0.0140035 | 0.0143590 | 0.032030 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMeans2(X, cols, rows) | 1.369476 | 1.337598 | 1.271985 | 1.326667 | 1.319029 | 0.2926437 |
3 | rowMeans2(X[cols, rows]) | 2.196320 | 2.190160 | 2.110785 | 2.171085 | 2.165925 | 0.8723480 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 5.980 | 6.1935 | 6.40476 | 6.3075 | 6.5270 | 8.118 |
2 | rowMeans2_X_S | 6.087 | 6.3315 | 6.81890 | 6.4500 | 6.6295 | 36.717 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2_X_S | 1.017893 | 1.022281 | 1.064661 | 1.022592 | 1.015704 | 4.522912 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3134893 167.5 5709258 305.0 5709258 305.0
Vcells 5695287 43.5 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3134887 167.5 5709258 305.0 5709258 305.0
Vcells 5745370 43.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.047693 | 0.0480815 | 0.0483832 | 0.048213 | 0.0484440 | 0.053227 |
2 | colMeans2(X, rows, cols) | 0.058319 | 0.0587005 | 0.0599412 | 0.058904 | 0.0591065 | 0.148362 |
3 | colMeans2(X[rows, cols]) | 0.118974 | 0.1194300 | 0.1202710 | 0.119697 | 0.1203885 | 0.139045 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.22280 | 1.220854 | 1.238886 | 1.221745 | 1.220099 | 2.787345 |
3 | colMeans2(X[rows, cols]) | 2.49458 | 2.483907 | 2.485803 | 2.482671 | 2.485107 | 2.612302 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.048577 | 0.0490745 | 0.0502173 | 0.0492735 | 0.049849 | 0.101283 |
2 | rowMeans2(X, cols, rows) | 0.074924 | 0.0754840 | 0.0761068 | 0.0757975 | 0.076091 | 0.085869 |
3 | rowMeans2(X[cols, rows]) | 0.111337 | 0.1122705 | 0.1144994 | 0.1129130 | 0.114409 | 0.173477 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMeans2(X, cols, rows) | 1.542376 | 1.538151 | 1.515551 | 1.538301 | 1.526430 | 0.8478126 |
3 | rowMeans2(X[cols, rows]) | 2.291969 | 2.287756 | 2.280080 | 2.291556 | 2.295111 | 1.7127948 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 47.693 | 48.0815 | 48.38318 | 48.2130 | 48.444 | 53.227 |
2 | rowMeans2_X_S | 48.577 | 49.0745 | 50.21728 | 49.2735 | 49.849 | 101.283 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowMeans2_X_S | 1.018535 | 1.020652 | 1.037908 | 1.021996 | 1.029003 | 1.90285 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135112 167.5 5709258 305.0 5709258 305.0
Vcells 5696080 43.5 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135103 167.5 5709258 305.0 5709258 305.0
Vcells 5746158 43.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.052139 | 0.0526350 | 0.0530807 | 0.0528350 | 0.0531475 | 0.058491 |
2 | colMeans2(X, rows, cols) | 0.056382 | 0.0568355 | 0.0571660 | 0.0571275 | 0.0573860 | 0.058743 |
3 | colMeans2(X[rows, cols]) | 0.115089 | 0.1157060 | 0.1178964 | 0.1160285 | 0.1168615 | 0.198967 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.081379 | 1.079804 | 1.076964 | 1.081244 | 1.079750 | 1.004308 |
3 | colMeans2(X[rows, cols]) | 2.207350 | 2.198271 | 2.221078 | 2.196054 | 2.198815 | 3.401669 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.053237 | 0.0538700 | 0.0545218 | 0.0541565 | 0.0546360 | 0.067469 |
2 | rowMeans2(X, cols, rows) | 0.074706 | 0.0754095 | 0.0760186 | 0.0756445 | 0.0759925 | 0.102267 |
3 | rowMeans2(X[cols, rows]) | 0.124307 | 0.1255445 | 0.1288937 | 0.1267330 | 0.1286625 | 0.222305 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2(X, cols, rows) | 1.403272 | 1.399842 | 1.394279 | 1.396776 | 1.390887 | 1.515763 |
3 | rowMeans2(X[cols, rows]) | 2.334974 | 2.330509 | 2.364076 | 2.340125 | 2.354903 | 3.294921 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 52.139 | 52.635 | 53.08073 | 52.8350 | 53.1475 | 58.491 |
2 | rowMeans2_X_S | 53.237 | 53.870 | 54.52182 | 54.1565 | 54.6360 | 67.469 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2_X_S | 1.021059 | 1.023464 | 1.027149 | 1.025012 | 1.028007 | 1.153494 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135330 167.5 5709258 305.0 5709258 305.0
Vcells 5787185 44.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135312 167.5 5709258 305.0 5709258 305.0
Vcells 5787348 44.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.001048 | 0.0010715 | 0.0014291 | 0.0010960 | 0.0011680 | 0.028541 |
2 | colMeans2(X, rows, cols) | 0.001187 | 0.0012495 | 0.0013424 | 0.0012710 | 0.0013140 | 0.004488 |
3 | colMeans2(X[rows, cols]) | 0.001631 | 0.0018775 | 0.0020696 | 0.0019435 | 0.0020545 | 0.009945 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.00000 | 1.0000000 |
2 | colMeans2(X, rows, cols) | 1.132634 | 1.166122 | 0.9393604 | 1.159671 | 1.12500 | 0.1572475 |
3 | colMeans2(X[rows, cols]) | 1.556298 | 1.752217 | 1.4481562 | 1.773266 | 1.75899 | 0.3484461 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.001037 | 0.0010640 | 0.0011604 | 0.0010835 | 0.0011735 | 0.003148 |
2 | rowMeans2(X, cols, rows) | 0.001208 | 0.0012345 | 0.0016028 | 0.0012510 | 0.0013245 | 0.031066 |
3 | rowMeans2(X[cols, rows]) | 0.001510 | 0.0017415 | 0.0019289 | 0.0018165 | 0.0019705 | 0.008154 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2(X, cols, rows) | 1.164899 | 1.160244 | 1.381306 | 1.154592 | 1.128675 | 9.868488 |
3 | rowMeans2(X[cols, rows]) | 1.456123 | 1.636748 | 1.662283 | 1.676511 | 1.679165 | 2.590216 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 1.037 | 1.0640 | 1.16038 | 1.0835 | 1.1735 | 3.148 |
1 | colMeans2_X_S | 1.048 | 1.0715 | 1.42910 | 1.0960 | 1.1680 | 28.541 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 |
1 | colMeans2_X_S | 1.010608 | 1.007049 | 1.231579 | 1.011537 | 0.9953132 | 9.066391 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135529 167.5 5709258 305.0 5709258 305.0
Vcells 5793138 44.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135523 167.5 5709258 305.0 5709258 305.0
Vcells 5803221 44.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.005872 | 0.0064425 | 0.0065669 | 0.0065555 | 0.0066285 | 0.010052 |
2 | colMeans2(X, rows, cols) | 0.007360 | 0.0079870 | 0.0083096 | 0.0081505 | 0.0083455 | 0.019401 |
3 | colMeans2(X[rows, cols]) | 0.021687 | 0.0221865 | 0.0231218 | 0.0223320 | 0.0226375 | 0.067764 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.253406 | 1.239736 | 1.265392 | 1.243307 | 1.259033 | 1.930064 |
3 | colMeans2(X[rows, cols]) | 3.693290 | 3.443772 | 3.520977 | 3.406605 | 3.415177 | 6.741345 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.005919 | 0.0064740 | 0.0067625 | 0.0066570 | 0.0067815 | 0.014183 |
2 | rowMeans2(X, cols, rows) | 0.007441 | 0.0079700 | 0.0081432 | 0.0081145 | 0.0082450 | 0.010104 |
3 | rowMeans2(X[cols, rows]) | 0.013215 | 0.0139585 | 0.0149644 | 0.0142105 | 0.0144640 | 0.061126 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMeans2(X, cols, rows) | 1.257138 | 1.231078 | 1.204183 | 1.218943 | 1.215808 | 0.7124022 |
3 | rowMeans2(X[cols, rows]) | 2.232641 | 2.156086 | 2.212866 | 2.134670 | 2.132862 | 4.3098075 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 5.872 | 6.4425 | 6.56686 | 6.5555 | 6.6285 | 10.052 |
2 | rowMeans2_X_S | 5.919 | 6.4740 | 6.76247 | 6.6570 | 6.7815 | 14.183 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2_X_S | 1.008004 | 1.004889 | 1.029787 | 1.015483 | 1.023082 | 1.410963 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135741 167.5 5709258 305.0 5709258 305.0
Vcells 5794560 44.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135732 167.5 5709258 305.0 5709258 305.0
Vcells 5804638 44.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.006849 | 0.0070510 | 0.0072699 | 0.0071870 | 0.0073375 | 0.009987 |
2 | colMeans2(X, rows, cols) | 0.007977 | 0.0083060 | 0.0090472 | 0.0084335 | 0.0086530 | 0.050012 |
3 | colMeans2(X[rows, cols]) | 0.022526 | 0.0228485 | 0.0236583 | 0.0230470 | 0.0233030 | 0.040380 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.164696 | 1.177989 | 1.244474 | 1.173438 | 1.179285 | 5.007710 |
3 | colMeans2(X[rows, cols]) | 3.288947 | 3.240462 | 3.254284 | 3.206762 | 3.175877 | 4.043256 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.006955 | 0.0071505 | 0.0076115 | 0.0072860 | 0.0074295 | 0.036883 |
2 | rowMeans2(X, cols, rows) | 0.007956 | 0.0082800 | 0.0086619 | 0.0084415 | 0.0086805 | 0.022799 |
3 | rowMeans2(X[cols, rows]) | 0.015898 | 0.0163690 | 0.0169838 | 0.0165925 | 0.0168355 | 0.029619 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMeans2(X, cols, rows) | 1.143925 | 1.157961 | 1.138006 | 1.158592 | 1.168383 | 0.6181439 |
3 | rowMeans2(X[cols, rows]) | 2.285837 | 2.289210 | 2.231342 | 2.277313 | 2.266034 | 0.8030529 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 6.849 | 7.0510 | 7.26990 | 7.187 | 7.3375 | 9.987 |
2 | rowMeans2_X_S | 6.955 | 7.1505 | 7.61149 | 7.286 | 7.4295 | 36.883 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2_X_S | 1.015477 | 1.014112 | 1.046987 | 1.013775 | 1.012538 | 3.693101 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135944 167.5 5709258 305.0 5709258 305.0
Vcells 5794692 44.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3135938 167.5 5709258 305.0 5709258 305.0
Vcells 5804775 44.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.007723 | 0.007972 | 0.0081978 | 0.0080790 | 0.0082330 | 0.012079 |
2 | colMeans2(X, rows, cols) | 0.010596 | 0.010898 | 0.0116180 | 0.0110600 | 0.0112635 | 0.060178 |
3 | colMeans2(X[rows, cols]) | 0.017175 | 0.017608 | 0.0183274 | 0.0178085 | 0.0180270 | 0.031155 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.372006 | 1.367035 | 1.417200 | 1.368981 | 1.368092 | 4.982035 |
3 | colMeans2(X[rows, cols]) | 2.223877 | 2.208731 | 2.235649 | 2.204295 | 2.189603 | 2.579270 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.007709 | 0.0079320 | 0.0082596 | 0.0080340 | 0.008173 | 0.023288 |
2 | rowMeans2(X, cols, rows) | 0.009782 | 0.0101190 | 0.0103566 | 0.0103075 | 0.010485 | 0.011927 |
3 | rowMeans2(X[cols, rows]) | 0.015188 | 0.0157655 | 0.0162749 | 0.0159710 | 0.016128 | 0.033182 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMeans2(X, cols, rows) | 1.268906 | 1.275719 | 1.253891 | 1.282985 | 1.282883 | 0.5121522 |
3 | rowMeans2(X[cols, rows]) | 1.970165 | 1.987582 | 1.970422 | 1.987926 | 1.973327 | 1.4248540 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 7.709 | 7.932 | 8.25960 | 8.034 | 8.173 | 23.288 |
1 | colMeans2_X_S | 7.723 | 7.972 | 8.19782 | 8.079 | 8.233 | 12.079 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colMeans2_X_S | 1.001816 | 1.005043 | 0.9925202 | 1.005601 | 1.007341 | 0.5186791 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3136143 167.5 5709258 305.0 5709258 305.0
Vcells 5840147 44.6 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3136137 167.5 5709258 305.0 5709258 305.0
Vcells 5940230 45.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.049093 | 0.0495460 | 0.0501448 | 0.0497405 | 0.0501215 | 0.062054 |
2 | colMeans2(X, rows, cols) | 0.067140 | 0.0675770 | 0.0712509 | 0.0678340 | 0.0680755 | 0.247151 |
3 | colMeans2(X[rows, cols]) | 0.196305 | 0.1978025 | 0.2038208 | 0.1988080 | 0.2003185 | 0.516251 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.367608 | 1.363924 | 1.420903 | 1.363758 | 1.358210 | 3.982838 |
3 | colMeans2(X[rows, cols]) | 3.998635 | 3.992300 | 4.064645 | 3.996904 | 3.996658 | 8.319383 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.051898 | 0.0523625 | 0.0549039 | 0.0526590 | 0.053032 | 0.152804 |
2 | rowMeans2(X, cols, rows) | 0.089185 | 0.0895640 | 0.0907285 | 0.0897950 | 0.090092 | 0.144052 |
3 | rowMeans2(X[cols, rows]) | 0.122574 | 0.1287530 | 0.1354444 | 0.1316945 | 0.137083 | 0.259074 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2(X, cols, rows) | 1.718467 | 1.710461 | 1.652496 | 1.705217 | 1.698823 | 0.942724 |
3 | rowMeans2(X[cols, rows]) | 2.361825 | 2.458878 | 2.466937 | 2.500892 | 2.584911 | 1.695466 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 49.093 | 49.5460 | 50.14479 | 49.7405 | 50.1215 | 62.054 |
2 | rowMeans2_X_S | 51.898 | 52.3625 | 54.90390 | 52.6590 | 53.0320 | 152.804 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2_X_S | 1.057136 | 1.056846 | 1.094907 | 1.058674 | 1.058069 | 2.462436 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3136353 167.5 5709258 305.0 5709258 305.0
Vcells 5840284 44.6 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3136353 167.5 5709258 305.0 5709258 305.0
Vcells 5940377 45.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 0.052271 | 0.0527665 | 0.0535432 | 0.0529310 | 0.0535930 | 0.061478 |
2 | colMeans2(X, rows, cols) | 0.059460 | 0.0599315 | 0.0619651 | 0.0601750 | 0.0605510 | 0.106062 |
3 | colMeans2(X[rows, cols]) | 0.119594 | 0.1202450 | 0.1292758 | 0.1211125 | 0.1230175 | 0.405650 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colMeans2(X, rows, cols) | 1.137533 | 1.135787 | 1.157292 | 1.136857 | 1.129830 | 1.725202 |
3 | colMeans2(X[rows, cols]) | 2.287961 | 2.278813 | 2.414420 | 2.288120 | 2.295402 | 6.598295 |
Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 0.053730 | 0.0542410 | 0.0551803 | 0.0545730 | 0.0548390 | 0.101148 |
2 | rowMeans2(X, cols, rows) | 0.086766 | 0.0871835 | 0.0875073 | 0.0873960 | 0.0876775 | 0.091674 |
3 | rowMeans2(X[cols, rows]) | 0.128705 | 0.1336225 | 0.1393993 | 0.1367735 | 0.1396765 | 0.286298 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMeans2(X, cols, rows) | 1.614852 | 1.607336 | 1.585843 | 1.601451 | 1.598817 | 0.9063353 |
3 | rowMeans2(X[cols, rows]) | 2.395403 | 2.463496 | 2.526253 | 2.506248 | 2.547029 | 2.8304860 |
Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 52.271 | 52.7665 | 53.54319 | 52.931 | 53.593 | 61.478 |
2 | rowMeans2_X_S | 53.730 | 54.2410 | 55.18028 | 54.573 | 54.839 | 101.148 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMeans2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMeans2_X_S | 1.027912 | 1.027944 | 1.030575 | 1.031022 | 1.023249 | 1.645271 |
Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 22.76 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowMeans2_subset')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:43:35 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>