Skip to content
Henrik Bengtsson edited this page Sep 11, 2019 · 3 revisions

matrixStats: Benchmark report


product() benchmarks on subsetted computation

This report benchmark the performance of product() on subsetted computation.

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:4]

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  3241875 173.2    5709258 305.0  5709258 305.0
Vcells 22502024 171.7   45062178 343.8 87357391 666.5
> stats <- microbenchmark(product_x_S = product(x_S, na.rm = FALSE), `product(x, idxs)` = product(x, 
+     idxs = idxs, na.rm = FALSE), `product(x[idxs])` = product(x[idxs], na.rm = FALSE), unit = "ms")

Table: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 product_x_S 0.013097 0.0134985 0.0136697 0.0136450 0.0138260 0.014607
2 product(x, idxs) 0.013833 0.0143995 0.0147004 0.0146490 0.0148715 0.018537
3 product(x[idxs]) 0.014758 0.0151945 0.0157799 0.0153405 0.0155625 0.046348
expr min lq mean median uq max
1 product_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 product(x, idxs) 1.056196 1.066748 1.075403 1.073580 1.075618 1.269049
3 product(x[idxs]) 1.126823 1.125644 1.154374 1.124258 1.125597 3.172999

Figure: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3238002 173.0    5709258 305.0  5709258 305.0
Vcells 7368594  56.3   36049743 275.1 87357391 666.5
> stats <- microbenchmark(product_x_S = product(x_S, na.rm = FALSE), `product(x, idxs)` = product(x, 
+     idxs = idxs, na.rm = FALSE), `product(x[idxs])` = product(x[idxs], na.rm = FALSE), unit = "ms")

Table: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 product_x_S 0.151525 0.1558065 0.1609891 0.1607430 0.1647510 0.181187
3 product(x[idxs]) 0.165618 0.1678545 0.1752373 0.1753845 0.1797005 0.204904
2 product(x, idxs) 0.174239 0.1789610 0.1853582 0.1848830 0.1897760 0.207322
expr min lq mean median uq max
1 product_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 product(x[idxs]) 1.093008 1.077327 1.088504 1.091086 1.090740 1.130898
2 product(x, idxs) 1.149903 1.148611 1.151371 1.150178 1.151896 1.144243

Figure: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
          used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3238074  173    5709258 305.0  5709258 305.0
Vcells 7463654   57   28839795 220.1 87357391 666.5
> stats <- microbenchmark(product_x_S = product(x_S, na.rm = FALSE), `product(x, idxs)` = product(x, 
+     idxs = idxs, na.rm = FALSE), `product(x[idxs])` = product(x[idxs], na.rm = FALSE), unit = "ms")

Table: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 product_x_S 1.494555 1.592543 1.641614 1.614740 1.644912 2.147136
3 product(x[idxs]) 1.673141 1.784554 1.844739 1.794579 1.836298 2.663072
2 product(x, idxs) 2.142434 2.262939 2.327280 2.322249 2.330865 3.082758
expr min lq mean median uq max
1 product_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 product(x[idxs]) 1.119491 1.120569 1.123735 1.111373 1.116350 1.240290
2 product(x, idxs) 1.433493 1.420959 1.417678 1.438156 1.417015 1.435753

Figure: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 3238146 173.0    5709258 305.0  5709258 305.0
Vcells 8408703  64.2   28839795 220.1 87357391 666.5
> stats <- microbenchmark(product_x_S = product(x_S, na.rm = FALSE), `product(x, idxs)` = product(x, 
+     idxs = idxs, na.rm = FALSE), `product(x[idxs])` = product(x[idxs], na.rm = FALSE), unit = "ms")

Table: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 product_x_S 15.13279 15.91471 17.79098 17.73090 19.10965 23.61119
3 product(x[idxs]) 23.34935 26.21922 27.67434 26.89137 28.74615 43.28268
2 product(x, idxs) 41.12062 42.84058 47.22270 44.96709 49.25474 67.80077
expr min lq mean median uq max
1 product_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 product(x[idxs]) 1.542965 1.647483 1.555526 1.516638 1.504274 1.833143
2 product(x, idxs) 2.717320 2.691885 2.654305 2.536086 2.577480 2.871552

Figure: Benchmarking of product_x_S(), product(x, idxs)() and product(x[idxs])() on n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-6    matrixStats_0.55.0-9000 ggplot2_3.2.1          
[4] knitr_1.24              R.devices_2.16.0        R.utils_2.9.0          
[7] R.oo_1.22.0             R.methodsS3_1.7.1       history_0.0.0-9002     

loaded via a namespace (and not attached):
 [1] Biobase_2.45.0       bit64_0.9-7          splines_3.6.1       
 [4] network_1.15         assertthat_0.2.1     highr_0.8           
 [7] stats4_3.6.1         blob_1.2.0           robustbase_0.93-5   
[10] pillar_1.4.2         RSQLite_2.1.2        backports_1.1.4     
[13] lattice_0.20-38      glue_1.3.1           digest_0.6.20       
[16] colorspace_1.4-1     sandwich_2.5-1       Matrix_1.2-17       
[19] XML_3.98-1.20        lpSolve_5.6.13.3     pkgconfig_2.0.2     
[22] genefilter_1.66.0    purrr_0.3.2          ergm_3.10.4         
[25] xtable_1.8-4         mvtnorm_1.0-11       scales_1.0.0        
[28] tibble_2.1.3         annotate_1.62.0      IRanges_2.18.2      
[31] TH.data_1.0-10       withr_2.1.2          BiocGenerics_0.30.0 
[34] lazyeval_0.2.2       mime_0.7             survival_2.44-1.1   
[37] magrittr_1.5         crayon_1.3.4         statnet.common_4.3.0
[40] memoise_1.1.0        laeken_0.5.0         R.cache_0.13.0      
[43] MASS_7.3-51.4        R.rsp_0.43.1         tools_3.6.1         
[46] multcomp_1.4-10      S4Vectors_0.22.1     trust_0.1-7         
[49] munsell_0.5.0        AnnotationDbi_1.46.1 compiler_3.6.1      
[52] rlang_0.4.0          grid_3.6.1           RCurl_1.95-4.12     
[55] cwhmisc_6.6          rappdirs_0.3.1       labeling_0.3        
[58] bitops_1.0-6         base64enc_0.1-3      boot_1.3-23         
[61] gtable_0.3.0         codetools_0.2-16     DBI_1.0.0           
[64] markdown_1.1         R6_2.4.0             zoo_1.8-6           
[67] dplyr_0.8.3          bit_1.1-14           zeallot_0.1.0       
[70] parallel_3.6.1       Rcpp_1.0.2           vctrs_0.2.0         
[73] DEoptimR_1.0-8       tidyselect_0.2.5     xfun_0.9            
[76] coda_0.19-3         

Total processing time was 13.9 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('product_subset')

Copyright Dongcan Jiang. Last updated on 2019-09-10 21:09:01 (-0700 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>
Clone this wiki locally